A113139 Number triangle, equal to half of Delannoy square array A008288.
1, 3, 1, 13, 5, 1, 63, 25, 7, 1, 321, 129, 41, 9, 1, 1683, 681, 231, 61, 11, 1, 8989, 3653, 1289, 377, 85, 13, 1, 48639, 19825, 7183, 2241, 575, 113, 15, 1, 265729, 108545, 40081, 13073, 3649, 833, 145, 17, 1, 1462563, 598417, 224143, 75517, 22363, 5641
Offset: 0
Examples
Triangle begins 1; 3, 1; 13, 5, 1; 63, 25, 7, 1; 321, 129, 41, 9, 1; 1683, 681, 231, 61, 11, 1; 8989, 3653, 1289, 377, 85, 13, 1; ... A113139 as a square array = A110171 * A008288: / 1 1 1 1 ... \ / 1 \ / 1 1 1 1 ...\ | 3 5 7 9 ... | | 2 1 || 1 3 5 7 ...| |13 25 41 61 ... | = | 8 4 1 || 1 5 13 25 ...| |63 129 231 377 ... | |38 18 6 1 || 1 7 25 63 .. | |... | |... || 1... | - _Peter Bala_, Dec 09 2015
Links
- Peter Bala, Notes on generalized Riordan arrays
- Peter Bala, A 4-parameter family of embedded Riordan arrays
Crossrefs
Programs
-
Maple
T := (n,k) -> (-1)^(n-k)*hypergeom([n+1, -n+k], [1], 2): seq(seq(simplify(T(n,k)),k=0..n),n=0..8); # Peter Luschny, Mar 02 2017
-
Mathematica
Table[Sum[Binomial[n - k, j] Binomial[n + j, k + j], {j, 0, n}], {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 09 2015 *)
Formula
T(n, k) = Sum_{j=0..n} C(n-k, j)*C(n+j, k+j).
T(n, k) = Sum_{j=0..n} C(n, j)*C(n-k, j-k)*2^(n-j).
From Peter Bala, Dec 09 2015: (Start)
T(n,k) = A008288(n - k, n).
O.g.f.: 2/( sqrt(x^2 - 6*x + 1)*(t*sqrt(x^2 - 6*x + 1) + t*x - t + 2) ) = 1 + (3 + t)*x + (13 + 5*t + t^2)*x^2 + ....
Riordan array (f(x), x*g(x)), where f(x) = 1/sqrt(1 - 6*x + x^2) is the o.g.f. for the central Delannoy numbers, A001850, and g(x) = 1/x* revert( x*(1 - x)/(1 + x) ) = 1 + 2*x + 6*x^2 + 22*x^3 + 90*x^4 + 394*x^5 + ... is the o.g.f. for the large Schroder numbers, A006318.
Read as a square array, this is the generalized Riordan array (f(x), g(x)) in the sense of the Bala link, which factorizes as (1 + x*g'(x)/g(x), x*g(x)) * (1/(1 - x), (1 + x)/(1 - x)) = A110171 * A008288. See the example below. (End)
T(n,k) = (-1)^(n-k)*hypergeom([n+1, -n+k], [1], 2). - Peter Luschny, Mar 02 2017
From Peter Bala, Feb 16 2020: (Start)
T(n,k) = P(n-k, k, 0, 3), where P(n, alpha, beta, x) is the n-th Jacobi polynomial with parameters alpha and beta.
T(n,k) = binomial(n,k) * hypergeom( [n + 1, k - n], [k + 1], -1 ).
The n-th row polynomial in descending powers of x is the n-th Taylor polynomial of the rational function (1 + x)^n/(1 - x)^(n+1) about 0. For example, for n = 4, (1 + x)^4/(1 - x)^5 = 1 + 9*x + 41*x^2 + 129*x^3 + 321*x^4 + O(x^5). Cf. A110171. (End)
Comments