A113156 Primes such that the sum of the predecessor and successor primes is divisible by 37.
181, 443, 557, 661, 967, 1109, 1553, 1951, 2069, 2441, 2551, 3257, 3371, 4001, 4783, 5179, 5987, 6143, 6217, 6473, 6701, 6803, 6841, 7213, 8431, 8663, 8839, 8887, 9283, 9511, 9839, 9883, 10177, 10589, 10771, 10883, 11059, 11093, 11173, 11437, 11657
Offset: 1
Examples
a(1) = 181 since prevprime(181) + nextprime(181) = 179 + 191 = 370 = 37 * 10. a(2) = 443 since prevprime(443) + nextprime(443) = 439 + 449 = 888 = 37 * 24. a(3) = 557 since prevprime(557) + nextprime(557) = 547 + 563 = 1110 = 37 * 30. a(4) = 661 since prevprime(661) + nextprime(661) = 659 + 673 = 1332 = 37 * 36.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
Prime@Select[Range[2, 1463], Mod[Prime[ # - 1] + Prime[ # + 1], 37] == 0 &] (* Robert G. Wilson v *) Transpose[Select[Partition[Prime[Range[1500]],3,1],Divisible[First[#]+ Last[#],37]&]][[2]] (* Harvey P. Dale, Dec 19 2011 *)
Formula
Extensions
More terms from Robert G. Wilson v, Jan 11 2006
Comments