cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113171 Short legs 'A' of exactly 7 primitive Pythagorean triangles.

Original entry on oeis.org

660, 1092, 1140, 1155, 1260, 1320, 1365, 1380, 1428, 1540, 1560, 1740, 1785, 1820, 1860, 1980, 1995, 2184, 2220, 2340, 2380, 2415, 2436, 2460, 2508, 2580, 2604, 2660, 2805, 2820, 2856, 2860, 2940, 3003, 3036, 3060, 3108, 3120, 3135, 3180, 3192, 3220, 3300
Offset: 1

Views

Author

Keywords

Examples

			Examples of triples: 660.779.1021, 660.989.1189, 660.2989.3061, 660.4331.4381, 660.12091.12109, 660.27221.27229, 660.108899.108901
1092.1325.1717, 1092.1595.1933, 1092.6035.6133, 1092.8245.8317, 1092.33115.33133, 1092.74525.74533, 1092.298115.298117
		

Crossrefs

Cf. A056866 Orders of non-solvable groups. A093006 Referring to the triangle in A093005, sequence contains the least term with maximal number of divisors. A138605 Short legs of more than 3 primitive Pythagorean triangles. A033993 Numbers that are divisible by exactly four different primes.

Programs

  • Mathematica
    PythagoreanAs[a_]:=(q={};k=0;Do[y=(a^2+b^2)^0.5;c=IntegerPart[y];If[c==y,p=0;If[GCD[a,b,c]==1,AppendTo[q,a.b.c];k++ ]],{b,a+1,a^2}];PrependTo[q,k];q);lst={};Do[If[PythagoreanAs[n][[1]]==7,Print[n];AppendTo[lst,n]],{n,6*10^2,2*10^3}];lst

Formula

a^2+b^2=c^2

Extensions

More terms from Ray Chandler, Jan 22 2020