A113176 Product_{p|n} F(p), where F(p) is the p-th Fibonacci number and where the product is over the distinct prime divisors of n.
1, 1, 2, 1, 5, 2, 13, 1, 2, 5, 89, 2, 233, 13, 10, 1, 1597, 2, 4181, 5, 26, 89, 28657, 2, 5, 233, 2, 13, 514229, 10, 1346269, 1, 178, 1597, 65, 2, 24157817, 4181, 466, 5, 165580141, 26, 433494437, 89, 10, 28657, 2971215073, 2, 13, 5, 3194, 233
Offset: 1
Examples
63 = 3^2 * 7^1. So a(63) = F(3) * F(7) = 2 * 13 = 26.
Links
- Danny Rorabaugh, Table of n, a(n) for n = 1..4000
Programs
-
Mathematica
b[t_]:=Fibonacci[First[t]] a[n_]:=Apply[Times, Map[b, FactorInteger[n]]] (* Esa Peuha, Oct 26 2005 *) Table[Times@@(Fibonacci[#]&/@FactorInteger[n][[All,1]]),{n,60}] (* Harvey P. Dale, May 31 2019 *)
-
Sage
[1]+[prod([fibonacci(p) for p in prime_factors(n)]) for n in range(2,53)] # Danny Rorabaugh, Apr 03 2015
Formula
Multiplicative with a(p^e) = F(p). - Franklin T. Adams-Watters, Jun 05 2006
Extensions
More terms from Esa Peuha (esa.peuha(AT)helsinki.fi), Oct 26 2005