A113211 Decimal expansion of (2 * log(3))/log(7).
1, 1, 2, 9, 1, 5, 0, 0, 6, 8, 1, 0, 7, 1, 5, 9, 2, 2, 7, 6, 0, 9, 1, 0, 0, 3, 3, 4, 3, 4, 9, 8, 1, 7, 0, 7, 2, 2, 8, 6, 4, 5, 5, 8, 2, 2, 3, 7, 3, 5, 8, 5, 1, 9, 0, 0, 9, 0, 8, 1, 8, 5, 2, 4, 6, 1, 5, 5, 0, 4, 6, 2, 8, 4, 0, 0, 8, 1, 8, 9, 9, 8, 0, 2, 0, 5, 6, 3, 0, 8, 9, 1, 6, 8, 7, 2, 2, 5, 2, 1, 9, 9
Offset: 1
Examples
1.1291500681071592276091003343498170722864558223735851900908185246...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Gosper Island
- Index entries for transcendental numbers
Crossrefs
Cf. decimal expansion of log_7(m): A152713 (m = 2), A152945 (m = 3), A153103 (m = 4), A153203 (m = 5), A153463 (m = 6), A153755 (m = 8), this sequence, A154158 (m = 10), A154179 (m = 11), A154200 (m = 12), A154294 (m = 13), A154467 (m = 14), A154572 (m = 15), A154793 (m = 16), A154857 (m = 17), A154912 (m = 18), A155059 (m = 19), A155496 (m = 20), A155591 (m = 21), A155735 (m = 22), A155824 (m = 23), A155964 (m = 24).
Programs
-
Magma
SetDefaultRealField(RealField(100)); Log(9)/Log(7); // G. C. Greubel, Sep 02 2018
-
Mathematica
RealDigits[(2 * Log[3])/Log[7], 10, 120][[1]] (* Harvey P. Dale, May 16 2012 *) RealDigits[Log[7,9], 10, 100][[1]] (* G. C. Greubel, Sep 02 2018 *)
-
PARI
default(realprecision, 100); log(9)/log(7) \\ G. C. Greubel, Sep 02 2018
Comments