A113301 Sum of odd-indexed terms of tribonacci numbers.
0, 1, 5, 18, 62, 211, 715, 2420, 8188, 27701, 93713, 317030, 1072506, 3628263, 12274327, 41523752, 140473848, 475219625, 1607656477, 5438662906, 18398864822, 62242913851, 210566269283, 712340586524, 2409830942708, 8152399683933, 27579370581033, 93300342369742
Offset: 0
Examples
a(0) = 0 = A000073(1); a(1) = 0+1 = A000073(1) + A000073(3) = 1; a(2) = 0+1+4 = A000073(1) + A000073(3) + A000073(5) = 5, prime; a(3) = 0+1+4+13 = A000073(1) + A000073(3) + A000073(5) + A000073(7) = 18; a(4) = 0+1+4+13+44 = A000073(1) + A000073(3) + A000073(5) + A000073(7) + A000073(9) = 62 = 2 * 31, semiprime; a(5) = 0+1+4+13+44+149 = A000073(1) + A000073(3) + A000073(5) + A000073(7) + A000073(9) + A000073(11) = 211, prime.
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-2,0,-1).
Programs
-
Magma
I:=[0,1,5,18]; [n le 4 select I[n] else 4*Self(n-1) - 2*Self(n-2) -Self(n-4): n in [1..41]]; // G. C. Greubel, Nov 20 2021
-
Mathematica
Accumulate[Take[LinearRecurrence[{1,1,1},{0,1,1},40],{1,-1,2}]] (* or *) LinearRecurrence[{4,-2,0,-1},{0,1,5,18},30] (* Harvey P. Dale, Apr 12 2013 *)
-
Sage
@CachedFunction def T(n): # A000073 if (n<2): return 0 elif (n==2): return 1 else: return T(n-1) +T(n-2) +T(n-3) def A113301(n): return sum(T(2*j+1) for j in (0..n)) [A113301(n) for n in (0..40)] # G. C. Greubel, Nov 20 2021
Formula
a(n) = Sum_{j=0..n} A000073(2*j+1).
a(n) = 4*a(n-1) - 2*a(n-2) - a(n-4), a(0)=0, a(1)=1, a(2)=5, a(3)=18. - Harvey P. Dale, Apr 12 2013
G.f.: x*(1+x) / ((1-x)*(1-3*x-x^2-x^3)). - Colin Barker, May 06 2013
Extensions
More terms from Colin Barker, May 06 2013
Comments