cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113301 Sum of odd-indexed terms of tribonacci numbers.

Original entry on oeis.org

0, 1, 5, 18, 62, 211, 715, 2420, 8188, 27701, 93713, 317030, 1072506, 3628263, 12274327, 41523752, 140473848, 475219625, 1607656477, 5438662906, 18398864822, 62242913851, 210566269283, 712340586524, 2409830942708, 8152399683933, 27579370581033, 93300342369742
Offset: 0

Views

Author

Jonathan Vos Post, Oct 24 2005

Keywords

Comments

A000073 is the tribonacci numbers. A113300 is the sum of even-indexed terms of tribonacci numbers. A099463 is the bisection of the tribonacci numbers. A113300(n) + A113301(n) = cumulative sum of tribonacci numbers = A008937(n). Primes in A113300 include a(2) = 5, a(5) = 211, a(9) = 27701, .... A113300 is semiprime for n = 4, 10, 14, ...

Examples

			a(0) = 0 = A000073(1);
a(1) = 0+1 = A000073(1) + A000073(3) = 1;
a(2) = 0+1+4 = A000073(1) + A000073(3) + A000073(5) = 5, prime;
a(3) = 0+1+4+13 = A000073(1) + A000073(3) + A000073(5) + A000073(7) = 18;
a(4) = 0+1+4+13+44 = A000073(1) + A000073(3) + A000073(5) + A000073(7) + A000073(9) = 62 = 2 * 31, semiprime;
a(5) = 0+1+4+13+44+149 = A000073(1) + A000073(3) + A000073(5) + A000073(7) + A000073(9) + A000073(11) = 211, prime.
		

Crossrefs

Programs

  • Magma
    I:=[0,1,5,18]; [n le 4 select I[n] else 4*Self(n-1) - 2*Self(n-2) -Self(n-4): n in [1..41]]; // G. C. Greubel, Nov 20 2021
    
  • Mathematica
    Accumulate[Take[LinearRecurrence[{1,1,1},{0,1,1},40],{1,-1,2}]] (* or *) LinearRecurrence[{4,-2,0,-1},{0,1,5,18},30] (* Harvey P. Dale, Apr 12 2013 *)
  • Sage
    @CachedFunction
    def T(n): # A000073
        if (n<2): return 0
        elif (n==2): return 1
        else: return T(n-1) +T(n-2) +T(n-3)
    def A113301(n): return sum(T(2*j+1) for j in (0..n))
    [A113301(n) for n in (0..40)] # G. C. Greubel, Nov 20 2021

Formula

a(n) = Sum_{j=0..n} A000073(2*j+1).
a(n) + A113300(n) = A008937(n).
a(n) = 4*a(n-1) - 2*a(n-2) - a(n-4), a(0)=0, a(1)=1, a(2)=5, a(3)=18. - Harvey P. Dale, Apr 12 2013
G.f.: x*(1+x) / ((1-x)*(1-3*x-x^2-x^3)). - Colin Barker, May 06 2013

Extensions

More terms from Colin Barker, May 06 2013