A113413 A Riordan array of coordination sequences.
1, 2, 1, 2, 4, 1, 2, 8, 6, 1, 2, 12, 18, 8, 1, 2, 16, 38, 32, 10, 1, 2, 20, 66, 88, 50, 12, 1, 2, 24, 102, 192, 170, 72, 14, 1, 2, 28, 146, 360, 450, 292, 98, 16, 1, 2, 32, 198, 608, 1002, 912, 462, 128, 18, 1, 2, 36, 258, 952, 1970, 2364, 1666, 688, 162, 20, 1, 2, 40, 326
Offset: 0
Examples
Triangle begins 1; 2, 1; 2, 4, 1; 2, 8, 6, 1; 2, 12, 18, 8, 1; 2, 16, 38, 32, 10, 1; 2, 20, 66, 88, 50, 12, 1;
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows
- Bela Bajnok, Additive Combinatorics: A Menu of Research Problems, arXiv:1705.07444 [math.NT], May 2017. See Sect. 2.3.
- Paul Barry, Riordan arrays, generalized Narayana triangles, and series reversion, Linear Algebra and its Applications, 491 (2016) 343-385.
- P. Holub, M. Miller, H. Perez-Roses, and J. Ryan, Degree diameter problem on honeycomb networks, Disc. Appl. Math. 179 (2014) 139-151.
- Milan Janjić, Words and Linear Recurrences, J. Int. Seq. 21 (2018), #18.1.4.
- Huyile Liang, Yanni Pei, and Yi Wang, Analytic combinatorics of coordination numbers of cubic lattices, arXiv:2302.11856 [math.CO], 2023. See p. 2.
- Mirka Miller, Hebert Perez-Roses, and Joe Ryan, The Maximum Degree-and-Diameter-Bounded Subgraph in the Mesh, arXiv preprint arXiv:1203.4069 [math.CO], 2012.
Programs
-
Mathematica
nn = 10; Map[Select[#, # > 0 &] &, CoefficientList[Series[1/(1 - 2 x/(1 + x) - y x), {x, 0, nn}], {x, y}]] // Grid (* Geoffrey Critzer, Jun 11 2015 *) CoefficientList[CoefficientList[Series[1/(1 - 2 x/(1 + x) - y x), {x, 0, 10}, {y, 0, 10}], x], y] (* Eric W. Weisstein, Feb 17 2016 *)
-
Sage
T = lambda n,k : binomial(n, k)*hypergeometric([-k-1, k-n], [-n], -1).simplify_hypergeometric() A113413 = lambda n,k : 1 if n==0 and k==0 else T(n, k) for n in (0..12): print([A113413(n,k) for k in (0..n)]) # Peter Luschny, Sep 17 2014 and Mar 16 2016
-
Sage
# Alternatively: def A113413_row(n): @cached_function def prec(n, k): if k==n: return 1 if k==0: return 0 return prec(n-1,k-1)+2*sum(prec(n-i,k-1) for i in (2..n-k+1)) return [prec(n, k) for k in (1..n)] for n in (1..10): print(A113413_row(n)) # Peter Luschny, Mar 16 2016
Formula
From Paul Barry, Nov 13 2005: (Start)
Riordan array ((1+x)/(1-x), x(1+x)/(1-x)).
T(n, k) = Sum_{i=0..n-k} C(k+1, i)*C(n-i, k).
T(n, k) = Sum_{j=0..n-k} C(k+j, j)*C(k+1, n-k-j).
T(n, k) = D(n, k) + D(n-1, k) where D(n, k) = Sum_{j=0..n-k} C(n-k, j)*C(k, j)*2^j = A008288(n, k).
T(n, k) = T(n-1, k) + T(n-1, k-1) + T(n-2, k-1).
T(n, k) = Sum_{j=0..n} C(floor((n+j)/2), k)*C(k, floor((n-j)/2)). (End)
T(n, k) = C(n, k)*hypergeometric([-k-1, k-n], [-n], -1). - Peter Luschny, Sep 17 2014
T(n, k) = (Sum_{i=2..k+2} A137513(k+2, i) * (n-k)^(i-2)) / (k!) for 0 <= k < n (conjectured). - Werner Schulte, Oct 31 2022
Comments