cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A080245 Inverse of coordination sequence array A113413.

Original entry on oeis.org

1, -2, 1, 6, -4, 1, -22, 16, -6, 1, 90, -68, 30, -8, 1, -394, 304, -146, 48, -10, 1, 1806, -1412, 714, -264, 70, -12, 1, -8558, 6752, -3534, 1408, -430, 96, -14, 1, 41586, -33028, 17718, -7432, 2490, -652, 126, -16, 1
Offset: 0

Views

Author

Paul Barry, Feb 13 2003

Keywords

Comments

Formal inverse of A035607 when written as lower triangular matrix 1 2 1 2 4 1 ...

Examples

			Rows are {1}, {-2, 1}, {6, -4, 1}, {-22, 16, -6, 1}, ....
From _Paul Barry_, Apr 28 2009: (Start)
Triangle begins
  1,
  -2, 1,
  6, -4, 1,
  -22, 16, -6, 1,
  90, -68, 30, -8, 1,
  -394, 304, -146, 48, -10, 1,
  1806, -1412, 714, -264, 70, -12, 1
Production matrix is
  -2, 1,
  2, -2, 1,
  -2, 2, -2, 1,
  2, -2, 2, -2, 1,
  -2, 2, -2, 2, -2, 1,
  2, -2, 2, -2, 2, -2, 1,
  -2, 2, -2, 2, -2, 2, -2, 1 (End)
		

Crossrefs

Row sums are signed little Schroeder numbers A080243. Diagonal sums are given by A080244.
Essentially same triangle as A033877 but with rows read in reversed order.

Formula

Essentially the same as the triangle T(n, k), for n>0 and k>0, given by [0, -2, -1, -2, -1, -2, -1, -2, ...] DELTA A000007. Triangle (unsigned) given by [0, 2, 1, 2, 1, 2, 1, 2, ...] DELTA A000007, where DELTA is Deléham's operator defined in A084938.
Riordan array ((sqrt(1+6x+x^2)-x-1)/(2x), (sqrt(1+6x+x^2)-x-1)/2).

A005899 Number of points on surface of octahedron; also coordination sequence for cubic lattice: a(0) = 1; for n > 0, a(n) = 4n^2 + 2.

Original entry on oeis.org

1, 6, 18, 38, 66, 102, 146, 198, 258, 326, 402, 486, 578, 678, 786, 902, 1026, 1158, 1298, 1446, 1602, 1766, 1938, 2118, 2306, 2502, 2706, 2918, 3138, 3366, 3602, 3846, 4098, 4358, 4626, 4902, 5186, 5478, 5778, 6086, 6402, 6726, 7058, 7398, 7746, 8102, 8466
Offset: 0

Views

Author

Keywords

Comments

Also, the number of regions the plane can be cut into by two overlapping concave (2n)-gons. - Joshua Zucker, Nov 05 2002
If X is an n-set and Y_i (i=1,2,3) are mutually disjoint 2-subsets of X then a(n-5) is equal to the number of 5-subsets of X intersecting each Y_i (i=1,2,3). - Milan Janjic, Aug 26 2007
Binomial transform of a(n) is A055580(n). - Wesley Ivan Hurt, Apr 15 2014
The identity (4*n^2+2)^2 - (n^2+1)*(4*n)^2 = 4 can be written as a(n)^2 - A002522(n)*A008586(n)^2 = 4. - Vincenzo Librandi, Jun 15 2014
Also the least number of unit cubes required, at the n-th iteration, to surround a 3D solid built from unit cubes, in order to hide all its visible faces, starting with a unit cube. - R. J. Cano, Sep 29 2015
Also, coordination sequence for "tfs" 3D uniform tiling. - N. J. A. Sloane, Feb 10 2018
Also, the number of n-th order specular reflections arriving at a receiver point from an emitter point inside a cuboid with reflective faces. - Michael Schutte, Sep 18 2018

References

  • H. S. M. Coxeter, "Polyhedral numbers," in R. S. Cohen et al., editors, For Dirk Struik. Reidel, Dordrecht, 1974, pp. 25-35.
  • Gmelin Handbook of Inorg. and Organomet. Chem., 8th Ed., 1994, TYPIX search code (225) cF8
  • B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tilings #16 and #22.
  • R. W. Marks and R. B. Fuller, The Dymaxion World of Buckminster Fuller. Anchor, NY, 1973, p. 46.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Partial sums give A001845.
Column 2 * 2 of array A188645.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
Row 3 of A035607, A266213, A343599.
Column 3 of A113413, A119800, A122542.

Programs

Formula

G.f.: ((1+x)/(1-x))^3. - Simon Plouffe in his 1992 dissertation
Binomial transform of [1, 5, 7, 1, -1, 1, -1, 1, ...]. - Gary W. Adamson, Nov 02 2007
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), with a(0)=1, a(1)=6, a(2)=18, a(3)=38. - Harvey P. Dale, Nov 08 2011
Recurrence: n*a(n) = (n-2)*a(n-2) + 6*a(n-1), a(0)=1, a(1)=6. - Fung Lam, Apr 15 2014
For n > 0, a(n) = A001844(n-1) + A001844(n) = (n-1)^2 + 2n^2 + (n+1)^2. - Doug Bell, Aug 18 2015
For n > 0, a(n) = A010014(n) - A195322(n). - R. J. Cano, Sep 29 2015
For n > 0, a(n) = A000384(n+1) + A014105(n-1). - Bruce J. Nicholson, Oct 08 2017
a(n) = A008574(n) + A008574(n-1) + a(n-1). - Bruce J. Nicholson, Dec 18 2017
a(n) = 2*d*Hypergeometric2F1(1-d, 1-n, 2, 2) where d=3, n>0. - Shel Kaphan, Feb 16 2023
a(n) = A035597(n)*3/n, for n>0. - Shel Kaphan, Feb 26 2023
E.g.f.: exp(x)*(2 + 4*x + 4*x^2) - 1. - Stefano Spezia, Mar 08 2023
Sum_{n>=0} 1/a(n) = 3/4 + Pi *sqrt(2)*coth( Pi/sqrt 2)/8 = 1.31858... - R. J. Mathar, Apr 27 2024

A035607 Table a(d,m) of number of points of L1 norm m in cubic lattice Z^d, read by antidiagonals (d >= 1, m >= 0).

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 1, 6, 8, 2, 1, 8, 18, 12, 2, 1, 10, 32, 38, 16, 2, 1, 12, 50, 88, 66, 20, 2, 1, 14, 72, 170, 192, 102, 24, 2, 1, 16, 98, 292, 450, 360, 146, 28, 2, 1, 18, 128, 462, 912, 1002, 608, 198, 32, 2, 1, 20, 162, 688, 1666, 2364, 1970, 952, 258, 36, 2, 1, 22, 200, 978, 2816
Offset: 0

Views

Author

Keywords

Comments

Table also gives coordination sequences of same lattices.
Rows sums are given by A001333. Rising and falling diagonals are the tribonacci numbers A000213, A001590. - Paul Barry, Feb 13 2003
a(d,m) also gives the number of ways to choose m squares from a 2 X (d-1) grid so that no two squares in the selection are (horizontally or vertically) adjacent. - Jacob A. Siehler, May 13 2006
Mirror image of triangle A113413. - Philippe Deléham, Oct 15 2006
The Ca1 sums lead to A126116 and the Ca2 sums lead to A070550, see A180662 for the definitions of these triangle sums. - Johannes W. Meijer, Aug 05 2011
A035607 is jointly generated with the Delannoy triangle A008288 as an array of coefficients of polynomials v(n,x): initially, u(1,x) = v(1,x) = 1; for n > 1, u(n,x) = x*u(n-1,x) + v(n-1) and v(n,x) = 2*x*u(n-1,x) + v(n-1,x). See the Mathematica section. - Clark Kimberling, Mar 05 2012
Also, the polynomial v(n,x) above is x + (x + 1)*f(n-1,x), where f(0,x) = 1. - Clark Kimberling, Oct 24 2014
Rows also give the coefficients of the independence polynomial of the n-ladder graph. - Eric W. Weisstein, Dec 29 2017
Considering both sequences as square arrays (offset by one row), the rows of A035607 are the first differences of the rows of A008288, and the rows of A008288 are the partial sums of the rows of A035607. - Shel Kaphan, Feb 23 2023
Considering only points with nonnegative coordinates, the number of points at L1 distance = m in d dimensions is the same as the number of ways of putting m indistinguishable balls into d distinguishable urns, binomial(m+d-1, d-1). This is one facet of the cross-polytope. Allowing for + and - coordinates, there are binomial(d,i)*2^i facets containing points with up to i nonzero coordinates. Eliminating double counting of points with any coordinates = 0, there are Sum_{i=1..d} (-1)^(d-i)*binomial(m+i-1,i-1)*binomial(d,i)*2^i points at distance m in d dimensions. One may avoid the alternating sum by using binomial(m-1,i-1) to count only the points per facet with exactly i nonzero coordinates, avoiding any double counting, but the result is the same. - Shel Kaphan, Mar 04 2023

Examples

			From _Clark Kimberling_, Oct 24 2014: (Start)
As a triangle of coefficients in polynomials v(n,x) in Comments, the first 6 rows are
  1
  1   2
  1   4   2
  1   6   8   2
  1   8  18  12   2
  1  10  32  38  16   2
  ... (End)
From _Shel Kaphan_, Mar 04 2023: (Start)
For d=3, m=4:
There are binomial(3,1)*2^1 = 6 facets (vertices) of binomial(4+1-1,1-1) = 1 point with <= one nonzero coordinate.
There are binomial(3,2)*2^2 = 12 facets (edges) of binomial(4+2-1,2-1) = 5 points with <= two nonzero coordinates.
There are binomial(3,3)*2^3 = 8 facets (faces) of binomial(4+3-1,3-1) = 15 points with <= three nonzero coordinates.
a(3,4) = 8*15 - 12*5 + 6*1 = 120 - 60 + 6 = 66. (End)
		

Crossrefs

Other versions: A113413, A119800, A122542, A266213.
Cf. A008288, which has g.f. 1/(1-x-x*y-x^2*y).
Cf. A078057 (row sums), A050146 (central terms).
Cf. A050146.

Programs

  • Haskell
    a035607 n k = a035607_tabl !! n !! k
    a035607_row n = a035607_tabl !! n
    a035607_tabl = map fst $ iterate
       (\(us, vs) -> (vs, zipWith (+) ([0] ++ us ++ [0]) $
                          zipWith (+) ([0] ++ vs) (vs ++ [0]))) ([1], [1, 2])
    -- Reinhard Zumkeller, Jul 20 2013
    
  • Maple
    A035607 := proc(d,m) local j: add(binomial(floor((d-1+j)/2),d-m-1)*binomial(d-m-1, floor((d-1-j)/2)),j=0..d-1) end: seq(seq(A035607(d,m),m=0..d-1),d=1..11); # d=dimension, m=norm # Johannes W. Meijer, Aug 05 2011
  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];
    v[n_, x_] := 2 x*u[n - 1, x] + v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A008288 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A035607 *)
    (* Clark Kimberling, Mar 09 2012 *)
    Reverse /@ CoefficientList[CoefficientList[Series[(1 + x)/(1 - x - x y - x^2 y), {x, 0, 10}], x], y] // Flatten (* Eric W. Weisstein, Dec 29 2017 *)
  • PARI
    T(n, k) = if (k==0, 1, sum(i=0, k-1, binomial(n-k,i+1)*binomial(k-1,i)*2^(i+1)));
    tabl(nn) = for (n=1, nn, for (k=0, n-1, print1(T(n, k), ", ")); print); \\ as a triangle; Michel Marcus, Feb 27 2018
  • Sage
    def A035607_row(n):
        @cached_function
        def prec(n, k):
            if k==n: return 1
            if k==0: return 0
            return prec(n-1,k-1)+2*sum(prec(n-i,k-1) for i in (2..n-k+1))
        return [prec(n, n-k) for k in (0..n-1)]
    for n in (1..10): print(A035607_row(n)) # Peter Luschny, Mar 16 2016
    

Formula

From Johannes W. Meijer, Aug 05 2011: (Start)
f(d,m) = Sum_{j=0..d-1} binomial(floor((d-1+j)/2), d-m-1)*binomial(d-m-1, floor((d-1-j)/2)), d >= 1 and 0 <= m <= d-1.
f(d,m) = f(d-1,m-1) + f(d-1,m) + f(d-2,m-1) (d >= 3 and 1 <= m <= d-1) with f(d,0) = 1 (d >= 1) and f(d,d-1) = 2 (d>=2). (End)
From Roger Cuculière, Apr 10 2006: (Start)
The generating function G(x,y) of this double sequence is the sum of a(n,p)*x^n*y^p, n=1..oo, p=0..oo, which is G(x,y) = x*(1+y)/(1-x-y-x*y).
The horizontal generating function H_n(y), which generates the rows of the table: (1, 2, 2, 2, 2, ...), (1, 4, 8, 12, 16, ...), (1, 6, 18, 38, 66, ...), is the sum of a(n,p)*y^p, p=0..oo, for each fixed n. This is H_n(y) = ((1+y)^n)/((1-y)^n).
The vertical generating function V_p(x), which generates the columns of the table: (1, 1, 1, 1, 1, ...), (2, 4, 6, 8, 10, ...), (2, 8, 18, 32, 50, ...), is the sum of a(n,p)*x^n, n=1..oo, for each fixed p. This is V_p(x) = 2*((1+x)^(p-1))/((1-x)^(p+1)) for p >= 1 and V_0(x) = x/(1-x). (End)
G.f.: (1+x)/(1-x-x*y-x^2*y). - Vladeta Jovovic, Apr 02 2002 (But see previous lines!)
T(2*n,n) = A050146(n+1). - Reinhard Zumkeller, Jul 20 2013
Seen as a triangle read by rows: T(n,0) = 1, for n > 1: T(n,n-1) = 2, T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n-2,k-1), 0 < k < n. - Reinhard Zumkeller, Jul 20 2013
Seen as a triangle T(n,k) with 0 <= k < n read by rows: T(n,0)=1 for n > 0 and T(n,k) = Sum_{i=0..k-1} binomial(n-k,i+1)*binomial(k-1,i)*2^(i+1) for k > 0. - Werner Schulte, Feb 22 2018
With p >= 1 and q >= 0, as a square array a(p,q) = T(p+q-1,q) = 2*p*Hypergeometric2F1[1-p, 1-q, 2, 2] for q >= 1. Consequently, a(p,q) = a(q,p)*p/q. - Shel Kaphan, Feb 14 2023
For n >= 1, T(2*n,n) = A002003(n), T(3*n,2*n) = A103885(n) and T(4*n,3*n) = A333715(n). - Peter Bala, Jun 15 2023

Extensions

More terms from David W. Wilson
Maple program corrected and information added by Johannes W. Meijer, Aug 05 2011

A122542 Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, 2, -1, 0, 0, 0, 0, 0, ...] DELTA [1, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 2, 4, 1, 0, 2, 8, 6, 1, 0, 2, 12, 18, 8, 1, 0, 2, 16, 38, 32, 10, 1, 0, 2, 20, 66, 88, 50, 12, 1, 0, 2, 24, 102, 192, 170, 72, 14, 1, 0, 2, 28, 146, 360, 450, 292, 98, 16, 1, 0, 2, 32, 198, 608, 1002, 912, 462, 128, 18, 1
Offset: 0

Views

Author

Philippe Deléham, Sep 19 2006, May 28 2007

Keywords

Comments

Riordan array (1, x*(1+x)/(1-x)). Rising and falling diagonals are the tribonacci numbers A000213, A001590.

Examples

			Triangle begins:
  1;
  0, 1;
  0, 2,  1;
  0, 2,  4,   1;
  0, 2,  8,   6,   1;
  0, 2, 12,  18,   8,    1;
  0, 2, 16,  38,  32,   10,   1;
  0, 2, 20,  66,  88,   50,  12,   1;
  0, 2, 24, 102, 192,  170,  72,  14,   1;
  0, 2, 28, 146, 360,  450, 292,  98,  16,  1;
  0, 2, 32, 198, 608, 1002, 912, 462, 128, 18, 1;
		

Crossrefs

Other versions: A035607, A113413, A119800, A266213.
Sums include: A000007, A001333 (row), A001590 (diagonal), A007483, A057077 (signed row), A078016 (signed diagonal), A086901, A091928, A104934, A122558, A122690.

Programs

  • Haskell
    a122542 n k = a122542_tabl !! n !! k
    a122542_row n = a122542_tabl !! n
    a122542_tabl = map fst $ iterate
       (\(us, vs) -> (vs, zipWith (+) ([0] ++ us ++ [0]) $
                          zipWith (+) ([0] ++ vs) (vs ++ [0]))) ([1], [0, 1])
    -- Reinhard Zumkeller, Jul 20 2013, Apr 17 2013
    
  • Magma
    function T(n, k) // T = A122542
      if k eq 0 then return 0^n;
      elif k eq n then return 1;
      else return T(n-1,k) + T(n-1,k-1) + T(n-2,k-1);
      end if;
    end function;
    [T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 27 2024
  • Mathematica
    CoefficientList[#, y]& /@ CoefficientList[(1-x)/(1 - (1+y)x - y x^2) + O[x]^11, x] // Flatten (* Jean-François Alcover, Sep 09 2018 *)
    (* Second program *)
    T[n_, k_]:= T[n, k]= If[k==n, 1, If[k==0, 0, T[n-1,k-1] +T[n-1,k] +T[n-2,k- 1] ]]; (* T = A122542 *)
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 27 2024 *)
  • Sage
    def A122542_row(n):
        @cached_function
        def prec(n, k):
            if k==n: return 1
            if k==0: return 0
            return prec(n-1,k-1)+2*sum(prec(n-i,k-1) for i in (2..n-k+1))
        return [prec(n, k) for k in (0..n)]
    for n in (0..10): print(A122542_row(n)) # Peter Luschny, Mar 16 2016
    

Formula

Sum_{k=0..n} x^k*T(n,k) = A000007(n), A001333(n), A104934(n), A122558(n), A122690(n), A091928(n) for x = 0, 1, 2, 3, 4, 5. - Philippe Deléham, Jan 25 2012
Sum_{k=0..n} 3^(n-k)*T(n,k) = A086901(n).
Sum_{k=0..n} 2^(n-k)*T(n,k) = A007483(n-1), n >= 1. - Philippe Deléham, Oct 08 2006
T(2*n, n) = A123164(n).
T(n, k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k-1), n > 1. - Philippe Deléham, Jan 25 2012
G.f.: (1-x)/(1-(1+y)*x-y*x^2). - Philippe Deléham, Mar 02 2012
From G. C. Greubel, Oct 27 2024: (Start)
Sum_{k=0..n} (-1)^k*T(n, k) = A057077(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A001590(n+1).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = A078016(n). (End)

A266213 Square array A(n,r), the number of neighbors at a sharp Manhattan distance r in a finite n-hypercube lattice, read by upwards antidiagonals; A(n,r) = Sum_{k=0..min(n,r)} binomial(r-1,k-1)*binomial(n,k)* 2^k.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 4, 2, 0, 1, 6, 8, 2, 0, 1, 8, 18, 12, 2, 0, 1, 10, 32, 38, 16, 2, 0, 1, 12, 50, 88, 66, 20, 2, 0, 1, 14, 72, 170, 192, 102, 24, 2, 0, 1, 16, 98, 292, 450, 360, 146, 28, 2, 0, 1, 18, 128, 462, 912, 1002, 608, 198, 32, 2, 0
Offset: 0

Views

Author

Dmitry Zaitsev, Dec 24 2015

Keywords

Comments

In an n-dimensional hypercube lattice, the array A(n,r) gives the number of nodes situated at a Manhattan distance equal to r, counting the current node. When counting coordinate offsets for neighboring nodes, binomial(n,k) chooses k nonzero coordinates from n coordinates, binomial(r-1,k-1) partitions the number r as the sum of exactly k nonzero numbers, and 2^k counts combinations of signs for coordinate offsets; starting indexing from 0 adds 1, which counts the current node.
In cellular automata theory, the cell surrounding with Manhattan distance less than or equal to r is called the von Neumann neighborhood of radius r or the diamond-shaped neighborhood to distinguish it from other generalizations of the von Neumann neighborhood for radius r>1, for instance, as a neighborhood having a difference in the range from -r to r in exactly one coordinate (the "narrow" von Neumann neighborhood of radius r).
The square array of partial sums of A(n,r) on rows gives us the Delannoy numbers A008288, which correspond to the number of nodes in the diamond-shaped neighborhood of radius r. - Dmitry Zaitsev, Dec 24 2015
For n >= 2, the term A(n,r) gives the number of polyominoes of bounding box 2 x (r+n-1) of area (r + 2(n-1)). Let A'(n,k) be the table A(n,k) without the first two rows. The sum of the terms in the i-th anti-diagonal of A'(n,k) gives the i-th term of A034182. - Louis Marin, Dec 11 2024

Examples

			The array A(n, k) begins:
n \ k  0  1   2   3    4     5     6      7      8      9
---------------------------------------------------------
0:     1  0   0   0    0     0     0      0      0      0
1:     1  2   2   2    2     2     2      2      2      2
2:     1  4   8  12   16    20    24     28     32     36
3:     1  6  18  38   66   102   146    198    258    326
4:     1  8  32  88  192   360   608    952   1408   1992
5:     1 10  50 170  450  1002  1970   3530   5890   9290
6:     1 12  72 292  912  2364  5336  10836  20256  35436
7:     1 14  98 462 1666  4942 12642  28814  59906 115598
8:     1 16 128 688 2816  9424 27008  68464 157184 332688
9:     1 18 162 978 4482 16722 53154 148626 374274 864146
...
For instance, in a 5-hypercube lattice there are 170 nodes situated at a Manhattan distance of 3 for a chosen node.
The triangle T(m, r) begins:
m\r 0  1   2   3   4    5   6   7  8 9 10 ...
0:  1
1:  1  0
2:  1  2   0
3:  1  4   2   0
4:  1  6   8   2   0
5:  1  8  18  12   2    0
6:  1 10  32  38  16    2   0
7:  1 12  50  88  66   20   2   0
8:  1 14  72 170 192  102  24   2  0
9:  1 16  98 292 450  360 146  28  2 0
10: 1 18 128 462 912 1002 608 198 32 2  0
... Formatted by _Wolfdieter Lang_, Jan 31 2016
		

Crossrefs

Other versions: A035607, A113413, A119800, A122542.
Partial sums on rows of A give A008288.
Cf. A001333 (row sums of T). A057077 (alternating row sums of T). - Wolfdieter Lang, Jan 31 2016

Programs

  • Maple
    # Prints the array by rows.
    gf := n -> ((1 + x)/(1 - x))^n: ser := n -> series(gf(n), x, 40):
    seq(lprint(seq(coeff(ser(n), x, k), k=0..6)), n=0..9); # Peter Luschny, Mar 20 2020
  • Mathematica
    Table[Sum[Binomial[r - 1, k - 1] Binomial[n - r, k] 2^k, {k, 0, Min[n - r, r]}], {n, 0, 10}, {r, 0, n}] // Flatten (* Michael De Vlieger, Dec 24 2015 *)
  • Python
    from sympy import binomial
    def T(n, r):
        if r==0: return 1
        return sum(binomial(r - 1, k - 1) * binomial(n - r, k) * 2**k for k in range(min(n - r, r) + 1))
    for n in range(11): print([T(n, r) for r in range(n + 1)]) # Indranil Ghosh, May 23 2017

Formula

A(n, 0)=1, n>=0, A(0, r)=0, r>0.
A(n, r) = A(n, r-1) + A(n-1, r-1) + A(n-1, r).
A(n, r) = Sum_{k=0..min(n,r)} binomial(r-1,k-1)*binomial(n,k)*2^k.
Triangle T(m, r) = A(m-r, r), n >= 0, 0 <= r <= n, otherwise 0. - Wolfdieter Lang, Jan 31 2016
A(n, k) = [x^k] ((1 + x)/(1 - x))^n. - Ilya Gutkovskiy, May 23 2017

A008412 Coordination sequence for 4-dimensional cubic lattice (points on surface of 4-dimensional cross-polytope).

Original entry on oeis.org

1, 8, 32, 88, 192, 360, 608, 952, 1408, 1992, 2720, 3608, 4672, 5928, 7392, 9080, 11008, 13192, 15648, 18392, 21440, 24808, 28512, 32568, 36992, 41800, 47008, 52632, 58688, 65192, 72160, 79608, 87552, 96008, 104992, 114520, 124608, 135272
Offset: 0

Views

Author

Keywords

Comments

Coordination sequence for 4-dimensional cyclotomic lattice Z[zeta_8].
If Y_i (i=1,2,3,4) are 2-blocks of a (n+4)-set X then a(n-3) is the number of 7-subsets of X intersecting each Y_i (i=1,2,3,4). - Milan Janjic, Oct 28 2007

Crossrefs

First differences of A001846.
Row 4 of A035607, A266213.
Column 4 of A113413, A119800, A122542.

Programs

  • Magma
    I:=[1,8,32,88,192]; [n le 5 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jan 15 2018
  • Maple
    8/3*n^3+16/3*n;
  • Mathematica
    CoefficientList[Series[((1+x)/(1-x))^4,{x,0,40}],x] (* or *)
    LinearRecurrence[{4, -6, 4, -1}, {1, 8, 32, 88, 192}, 41] (* Harvey P. Dale, Jun 10 2011 *)
    f[n_] := 8 n (n^2 + 2)/3; f[0] = 1; Array[f, 38, 0] (* or *)
    g[n_] := 4n^2 +2; f[n_] := f[n-1] + g[n] + g[n -1]; f[0] = 1; f[1] = 8; Array[f, 38, 0] (* Robert G. Wilson v, Dec 27 2017 *)
  • PARI
    a(n)=if(n,8*(n^2+2)*n/3,1) \\ Charles R Greathouse IV, Jun 10 2011
    

Formula

G.f.: ((1+x)/(1-x))^4.
a(n) = 8*n*(n^2+2)/3 for n>1.
a(n) = 8*A006527(n) for n>0.
a(n) = A005899(n) + A005899(n-1) + a(n-1). - Bruce J. Nicholson, Dec 17 2017
n*a(n) = 8*a(n-1) + (n-2)*a(n-2) for n > 1. - Seiichi Manyama, Jun 06 2018
a(n) = 2*d*Hypergeometric2F1(1-d, 1-n, 2, 2) where d=4, for n>=1. - Shel Kaphan, Feb 14 2023
a(n) = A035598(n)*4/n, for n>0. - Shel Kaphan, Feb 28 2023
E.g.f.: 1 + 8*exp(x)*x*(3 + 3*x + x^2)/3. - Stefano Spezia, Mar 14 2024

A119800 Array of coordination sequences for cubic lattices (rows) and of numbers of L1 forms in cubic lattices (columns) (array read by antidiagonals).

Original entry on oeis.org

4, 8, 6, 12, 18, 8, 16, 38, 32, 10, 20, 66, 88, 50, 12, 24, 102, 192, 170, 72, 14, 28, 146, 360, 450, 292, 98, 16, 32, 198, 608, 1002, 912, 462, 128, 18, 36, 258, 952, 1970, 2364, 1666, 688, 162, 20, 40, 326, 1408, 3530, 5336, 4942, 2816, 978, 200, 22
Offset: 1

Views

Author

Thomas Wieder, Jul 30 2006, Aug 06 2006

Keywords

Examples

			The second row of the table is: 6, 18, 38, 66, 102, 146, 198, 258, 326, ... = A005899 = number of points on surface of octahedron.
The third column of the table is: 12, 38, 88, 170, 292, 462, 688, 978, 1340, ... = A035597 = number of points of L1 norm 3 in cubic lattice Z^n.
The first rows are: A008574, A005899, A008412, A008413, A008414, A008415, A008416, A008418, A008420.
The first columns are: A005843, A001105, A035597, A035598, A035599, A035600, A035601, A035602, A035603.
The main diagonal seems to be A050146.
Square array A(n,k) begins:
   4,   8,   12,   16,    20,    24,     28,     32,      36, ...
   6,  18,   38,   66,   102,   146,    198,    258,     326, ...
   8,  32,   88,  192,   360,   608,    952,   1408,    1992, ...
  10,  50,  170,  450,  1002,  1970,   3530,   5890,    9290, ...
  12,  72,  292,  912,  2364,  5336,  10836,  20256,   35436, ...
  14,  98,  462, 1666,  4942, 12642,  28814,  59906,  115598, ...
  16, 128,  688, 2816,  9424, 27008,  68464, 157184,  332688, ...
  18, 162,  978, 4482, 16722, 53154, 148626, 374274,  864146, ...
  20, 200, 1340, 6800, 28004, 97880, 299660, 822560, 2060980, ...
		

Crossrefs

Programs

  • Maple
    A:= proc(m, n)  option remember;
          `if`(n=0, 1, `if`(m=0, 2, A(m, n-1) +A(m-1, n) +A(m-1, n-1)))
        end:
    seq(seq(A(n, 1+d-n), n=1..d), d=1..10);  # Alois P. Heinz, Apr 21 2012
  • Mathematica
    A[m_, n_] := A[m, n] = If[n == 0, 1, If[m == 0, 2, A[m, n-1] + A[m-1, n] + A[m-1, n-1]]]; Table[Table[A[n, 1+d-n], {n, 1, d}], {d, 1, 10}] // Flatten (* Jean-François Alcover, Mar 09 2015, after Alois P. Heinz *)

Formula

A(m,n) = A(m,n-1) + A(m-1,n) + A(m-1,n-1), A(m,0)=1, A(0,0)=1, A(0,n)=2.

Extensions

Offset and typos corrected by Alois P. Heinz, Apr 21 2012

A035597 Number of points of L1 norm 3 in cubic lattice Z^n.

Original entry on oeis.org

0, 2, 12, 38, 88, 170, 292, 462, 688, 978, 1340, 1782, 2312, 2938, 3668, 4510, 5472, 6562, 7788, 9158, 10680, 12362, 14212, 16238, 18448, 20850, 23452, 26262, 29288, 32538, 36020, 39742, 43712, 47938, 52428, 57190, 62232, 67562
Offset: 0

Views

Author

Keywords

Comments

Sums of the first n terms > 0 of A001105 in palindromic arrangement. a(n) = Sum_{i=1 .. n} A001105(i) + Sum_{i=1 .. n-1} A001105(i), e.g. a(3) = 38 = 2 + 8 + 18 + 8 + 2; a(4) = 88 = 2 + 8 + 18 + 32 + 18 + 8 + 2. - Klaus Purath, Jun 19 2020
Apart from multiples of 3, all divisors of n are also divisors of a(n), i.e. if n is not divisible by 3, a(n) is divisible by n. All divisors d of a(n) for d !== 0 (mod) 3 are also divisors of a(abs(n-d)) and a(n+d). For all n congruent to 0,2,7 (mod 9) a(n) is divisible by 3. If n is divisible by 3^k, a(n) is divisible by 3^(k-1). - Klaus Purath, Jul 24 2020

Crossrefs

Partial sums of A069894.
Column 3 of A035607, A266213, A343599.
Row 3 of A113413, A119800, A122542.

Programs

  • Magma
    [(4*n^3 + 2*n)/3: n in [0..40]]; // Vincenzo Librandi, Sep 19 2011
  • Maple
    f := proc(n,m) local i; sum( 2^i*binomial(n,i)*binomial(m-1,i-1),i=1..min(n,m)); end; # n=dimension, m=norm
  • Mathematica
    Table[(4n^3+2n)/3,{n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{0,2,12,38},41] (* Harvey P. Dale, Sep 18 2011 *)

Formula

a(n) = (4*n^3 + 2*n)/3.
a(n) = 2*A005900(n). - R. J. Mathar, Dec 05 2009
a(0)=0, a(1)=2, a(2)=12, a(3)=38, a(n)=4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). G.f.: (2*x*(x+1)^2)/(x-1)^4. - Harvey P. Dale, Sep 18 2011
a(n) = -a(-n), a(n+1) = A097869(4n+3) = A084570(2n+1). - Bruno Berselli, Sep 20 2011
a(n) = 2*n*Hypergeometric2F1(1-n,1-k,2,2), where k=3. Also, a(n) = A001845(n) - A001844(n). - Shel Kaphan, Feb 26 2023
a(n) = A005899(n)*n/3. - Shel Kaphan, Feb 26 2023
a(n) = A006331(n)+A006331(n-1). - R. J. Mathar, Aug 12 2025

A008413 Coordination sequence for 5-dimensional cubic lattice.

Original entry on oeis.org

1, 10, 50, 170, 450, 1002, 1970, 3530, 5890, 9290, 14002, 20330, 28610, 39210, 52530, 69002, 89090, 113290, 142130, 176170, 216002, 262250, 315570, 376650, 446210, 525002, 613810, 713450, 824770, 948650, 1086002, 1237770, 1404930
Offset: 0

Views

Author

Keywords

Comments

If Y_i (i=1,2,3,4,5) are 2-blocks of a (n+5)-set X then a(n-4) is the number of 9-subsets of X intersecting each Y_i (i=1,2,3,4,5). - Milan Janjic, Oct 28 2007

Crossrefs

Cf. A035599.
Row 5 of A035607, A266213.
Column 5 of A113413, A119800, A122542.

Programs

  • Maple
    4/3*n^4+20/3*n^2+2;
  • Mathematica
    LinearRecurrence[{5,-10,10,-5,1},{1,10,50,170,450,1002},40] (* Harvey P. Dale, May 02 2016 *)
    {1}~Join~Table[4/3 n^4 + 20/3 n^2 + 2, {n, 32}] (* or *)
    CoefficientList[Series[((1 + x)/(1 - x))^5, {x, 0, 32}], x] (* Michael De Vlieger, Oct 04 2016 *)

Formula

G.f.: ((1+x)/(1-x))^5.
a(n) = (4/3)*n^4 + (20/3)*n^2 + 2 for n > 0. - Michael De Vlieger, Oct 04 2016
n*a(n) = 10*a(n-1) + (n-2)*a(n-2) for n > 1. - Seiichi Manyama, Jun 06 2018
From Shel Kaphan, Mar 03 2023: (Start)
a(n) = 2*d*Hypergeometric2F1(1-d, 1-n, 2, 2) where d=5, for n>=1.
a(n) = A035599(n)*5/n, for n>0. (End)

A035598 Number of points of L1 norm 4 in cubic lattice Z^n.

Original entry on oeis.org

0, 2, 16, 66, 192, 450, 912, 1666, 2816, 4482, 6800, 9922, 14016, 19266, 25872, 34050, 44032, 56066, 70416, 87362, 107200, 130242, 156816, 187266, 221952, 261250, 305552, 355266, 410816, 472642, 541200, 616962, 700416, 792066
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [( 2*n^4 +4*n^2 )/3: n in [0..40]]; // Vincenzo Librandi, Apr 22 2012
  • Maple
    f := proc(d,m) local i; sum( 2^i*binomial(d,i)*binomial(m-1,i-1),i=1..min(d,m)); end; # n=dimension, m=norm
  • Mathematica
    CoefficientList[Series[2*x*(1+x)^3/(1-x)^5,{x,0,40}],x] (* Vincenzo Librandi, Apr 22 2012 *)
    LinearRecurrence[{5,-10,10,-5,1},{0,2,16,66,192},50] (* Harvey P. Dale, Dec 11 2019 *)
  • PARI
    a(n)=2*n^2*(n^2+2)/3 \\ Charles R Greathouse IV, Dec 07 2011
    

Formula

a(n) = 2*n^2*(n^2 + 2)/3. - Frank Ellermann, Mar 16 2002
G.f.: 2*x*(1+x)^3/(1-x)^5. - Colin Barker, Apr 15 2012
a(n) = 2*A014820(n-1). - R. J. Mathar, Dec 10 2013
a(n) = a(n-1) + A035597(n) + A035597(n-1). - Bruce J. Nicholson, Mar 11 2018
From Shel Kaphan, Feb 28 2023: (Start)
a(n) = 2*n*Hypergeometric2F1(1-n,1-k,2,2), where k=4.
a(n) = A001846(n) - A001845(n).
a(n) = A008412(n)*n/4. (End)
From Amiram Eldar, Mar 12 2023: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/8 - 3*Pi*coth(sqrt(2)*Pi)/(8*sqrt(2)) + 3/16.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/16 + 3*Pi*cosech(sqrt(2)*Pi)/(8*sqrt(2)) - 3/16. (End)
E.g.f.: 2*exp(x)*x*(3 + 9*x + 6*x^2 + x^3)/3. - Stefano Spezia, Mar 14 2024
Showing 1-10 of 16 results. Next