cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A080247 Formal inverse of triangle A080246. Unsigned version of A080245.

Original entry on oeis.org

1, 2, 1, 6, 4, 1, 22, 16, 6, 1, 90, 68, 30, 8, 1, 394, 304, 146, 48, 10, 1, 1806, 1412, 714, 264, 70, 12, 1, 8558, 6752, 3534, 1408, 430, 96, 14, 1, 41586, 33028, 17718, 7432, 2490, 652, 126, 16, 1, 206098
Offset: 0

Views

Author

Paul Barry, Feb 15 2003

Keywords

Comments

Row sums are little Schroeder numbers A001003. Diagonal sums are generalized Fibonacci numbers A006603. Columns include A006318, A006319, A006320, A006321.
T(n,k) is the number of dissections of a convex (n+3)-gon by nonintersecting diagonals with exactly k diagonals emanating from a fixed vertex. Example: T(2,1)=4 because the dissections of the convex pentagon ABCDE having exactly one diagonal emanating from the vertex A are: {AC}, {AD}, {AC,EC} and {AD,BD}. - Emeric Deutsch, May 31 2004
For more triangle sums, see A180662, see the Schroeder triangle A033877 which is the mirror of this triangle. - Johannes W. Meijer, Jul 15 2013

Examples

			Triangle starts:
[0]    1
[1]    2,    1
[2]    6,    4,   1
[3]   22,   16,   6,   1
[4]   90,   68,  30,   8,  1
[5]  394,  304, 146,  48, 10,  1
[6] 1806, 1412, 714, 264, 70, 12, 1
...
From _Gary W. Adamson_, Jul 25 2011: (Start)
n-th row = top row of M^n, M = the following infinite square production matrix:
  2, 1, 0, 0, 0, ...
  2, 2, 1, 0, 0, ...
  2, 2, 2, 1, 0, ...
  2, 2, 2, 2, 1, ...
  ... (End)
		

Crossrefs

Cf. A000007, A033877 (mirror), A084938.

Programs

  • Maple
    A080247:=(n,k)->(k+1)*add(binomial(n+1,k+j+1)*binomial(n+j,j),j=0..n-k)/(n+1):
    seq(seq(A080247(n,k),k=0..n),n=0..9);
  • Mathematica
    Clear[w] w[n_, k_] /; k < 0 || k > n := 0 w[0,0]=1 ; w[n_, k_] /; 0 <= k <= n && !n == k == 0 := w[n, k] = w[n-1,k-1] + w[n-1,k] + w[n,k+1] Table[w[n,k],{n,0,10},{k,0,n}] (* David Callan, Jul 03 2006 *)
    T[n_, k_] := Binomial[n, k] Hypergeometric2F1[k - n, n + 1, k + 2, -1];
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Peter Luschny, Jan 08 2018 *)
  • Maxima
    T(n,k):=((k+1)*sum(2^m*binomial(n+1,m)*binomial(n-k-1,n-k-m),m,0,n-k))/(n+1); /* Vladimir Kruchinin, Jan 10 2022 */
  • Sage
    def A080247_row(n):
        @cached_function
        def prec(n, k):
            if k==n: return 1
            if k==0: return 0
            return prec(n-1,k-1)-2*sum(prec(n,k+i-1) for i in (2..n-k+1))
        return [(-1)^(n-k)*prec(n, k) for k in (1..n)]
    for n in (1..10): print(A080247_row(n)) # Peter Luschny, Mar 16 2016
    

Formula

G.f.: 2/(2+y*x-y+y*(x^2-6*x+1)^(1/2))/y/x. - Vladeta Jovovic, Feb 16 2003
Essentially same triangle as triangle T(n,k), n > 0 and k > 0, read by rows; given by [0, 2, 1, 2, 1, 2, 1, 2, 1, 2, ...] DELTA A000007 where DELTA is Deléham's operator defined in A084938.
T(n, k) = T(n-1, k-1) + 2*Sum_{j>=0} T(n-1, k+j) with T(0, 0) = 1 and T(n, k)=0 if k < 0. - Philippe Deléham, Jan 19 2004
T(n, k) = (k+1)*Sum_{j=0..n-k} (binomial(n+1, k+j+1)*binomial(n+j, j))/(n+1). - Emeric Deutsch, May 31 2004
Recurrence: T(0,0)=1; T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n,k+1). - David Callan, Jul 03 2006
T(n, k) = binomial(n, k)*hypergeom([k - n, n + 1], [k + 2], -1). - Peter Luschny, Jan 08 2018
T(n,k) = (k+1)/(n+1)*Sum_{m=0..n-k} 2^m*binomial(n+1,m)*binomial(n-k-1,n-k-m). - Vladimir Kruchinin, Jan 10 2022
From Peter Bala, Sep 16 2024: (Start)
Riordan array (S(x), x*S(x)), where S(x) = (1 - x - sqrt(1 - 6*x + x^2))/(2*x) is the g.f. of the large Schröder numbers A006318.
For integer m and n >= 1, (m + 2)*[x^n] S(x)^(m*n) = m*[x^n] (1/S(-x))^((m+2)*n). For cases of this identity see A103885 (m = 1), A333481 (m = 2) and A370102 (m = 3). (End)

A033877 Triangular array read by rows associated with Schroeder numbers: T(1,k) = 1; T(n,k) = 0 if k < n; T(n,k) = T(n,k-1) + T(n-1,k-1) + T(n-1,k).

Original entry on oeis.org

1, 1, 2, 1, 4, 6, 1, 6, 16, 22, 1, 8, 30, 68, 90, 1, 10, 48, 146, 304, 394, 1, 12, 70, 264, 714, 1412, 1806, 1, 14, 96, 430, 1408, 3534, 6752, 8558, 1, 16, 126, 652, 2490, 7432, 17718, 33028, 41586, 1, 18, 160, 938, 4080, 14002, 39152, 89898, 164512, 206098
Offset: 1

Views

Author

Keywords

Comments

A106579 is in some ways a better version of this sequence, but since this was entered first it will be the main entry for this triangle.
The diagonals of this triangle are self-convolutions of the main diagonal A006318: 1, 2, 6, 22, 90, 394, 1806, ... . - Philippe Deléham, May 15 2005
From Johannes W. Meijer, Sep 22 2010, Jul 15 2013: (Start)
Note that for the terms T(n,k) of this triangle n indicates the column and k the row.
The triangle sums, see A180662, link Schroeder's triangle with several sequences, see the crossrefs. The mirror of this triangle is A080247.
Quite surprisingly the Kn1p sums, p >= 1, are all related to A026003 and crystal ball sequences for n-dimensional cubic lattices (triangle offset is 0): Kn11(n) = A026003(n), Kn12(n) = A026003(n+2) - 1, Kn13(n) = A026003(n+4) - A005408(n+3), Kn14(n) = A026003(n+6) - A001844(n+4), Kn15(n) = A026003(n+8) - A001845(n+5), Kn16(n) = A026003(n+10) - A001846(n+6), Kn17(n) = A026003(n+12) - A001847(n+7), Kn18(n) = A026003(n+14) - A001848(n+8), Kn19(n) = A026003(n+16) - A001849(n+9), Kn110(n) = A026003(n+18) - A008417(n+10), Kn111(n) = A026003(n+20) - A008419(n+11), Kn112(n) = A026003(n+22) - A008421(n+12). (End)
T(n,k) is the number of normal semistandard Young tableaux with two columns, one of height k and one of height n. The recursion can be seen by performing jeu de taquin deletion on all instances of the smallest value. (If there are two instances of the smallest value, jeu de taquin deletion will always shorten the right column first and the left column second.) - Jacob Post, Jun 19 2018

Examples

			Triangle starts:
  1;
  1,    2;
  1,    4,    6;
  1,    6,   16,   22;
  1,    8,   30,   68,   90;
  1,   10,   48,  146,  304,  394;
  1,   12,   70,  264,  714, 1412, 1806;
  ... - _Joerg Arndt_, Sep 29 2013
		

Crossrefs

Essentially same triangle as A080247 and A080245 but with rows read in reversed order. Also essentially the same triangle as A106579.
Cf. A001003 (row sums), A026003 (antidiagonal sums).
Triangle sums (see the comments): A001003 (Row1, Row2), A026003 (Kn1p, p >= 1), A006603 (Kn21), A227504 (Kn22), A227505 (Kn23), A006603(2*n) (Kn3), A001850 (Kn4), A227506 (Fi1), A010683 (Fi2).

Programs

  • Haskell
    a033877 n k = a033877_tabl !! n !! k
    a033877_row n = a033877_tabl !! n
    a033877_tabl = iterate
       (\row -> scanl1 (+) $ zipWith (+) ([0] ++ row) (row ++ [0])) [1]
    -- Reinhard Zumkeller, Apr 17 2013
    
  • Magma
    function t(n,k)
      if k le 0 or k gt n then return 0;
      elif k eq 1 then return 1;
      else return t(n,k-1) + t(n-1,k-1) + t(n-1,k);
      end if;
    end function;
    [t(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 23 2023
  • Maple
    T := proc(n, k) option remember; if n=1 then return(1) fi; if kJohannes W. Meijer, Sep 22 2010, revised Jul 17 2013
  • Mathematica
    T[1, ]:= 1; T[n, k_]/;(k
    				
  • Sage
    def A033877_row(n):
        @cached_function
        def prec(n, k):
            if k==n: return 1
            if k==0: return 0
            return prec(n-1,k-1)-2*sum(prec(n,k+i-1) for i in (2..n-k+1))
        return [(-1)^k*prec(n, n-k) for k in (0..n-1)]
    for n in (1..10): print(A033877_row(n)) # Peter Luschny, Mar 16 2016
    
  • SageMath
    @CachedFunction
    def t(n, k): # t = A033847
        if (k<0 or k>n): return 0
        elif (k==1): return 1
        else: return t(n, k-1) + t(n-1, k-1) + t(n-1, k)
    flatten([[t(n,k) for k in range(1,n+1)] for n in range(1, 16)]) # G. C. Greubel, Mar 23 2023
    

Formula

As an upper right triangle: a(n, k) = a(n, k-1) + a(n-1, k-1) + a(n-1, k) if k >= n >= 0 and a(n, k) = 0 otherwise.
G.f.: Sum T(n, k)*x^n*y^k = (1-x*y-(x^2*y^2-6*x*y+1)^(1/2)) / (x*(2*y+x*y-1+(x^2*y^2-6*x*y+1)^(1/2))). - Vladeta Jovovic, Feb 16 2003
Another version of A000007 DELTA [0, 2, 1, 2, 1, 2, 1, 2, 1, 2, ...] = 1, 1, 0, 1, 2, 0, 1, 4, 6, 0, 1, 6, 16, 22, 0, 1, ..., where DELTA is Deléham's operator defined in A084938.
Sum_{n=1..floor((k+1)/2)} T(n+p-1, k-n+p) = A026003(2*p+k-3) - A008288(2*p+k-3, p-2), p >= 2, k >= 1. - Johannes W. Meijer, Sep 28 2013
From G. C. Greubel, Mar 23 2023: (Start)
(t(n, k) as a lower triangle)
t(n, k) = t(n, k-1) + t(n-1, k-1) + t(n-1, k) with t(n, 1) = 1.
t(n, n) = A006318(n-1).
t(2*n-1, n) = A330801(n-1).
t(2*n-2, n) = A103885(n-1), n > 1.
Sum_{k=1..n-1} t(n, k) = A238112(n), n > 1.
Sum_{k=1..n} t(n, k) = A001003(n).
Sum_{k=1..n-1} (-1)^(k-1)*t(n, k) = (-1)^n*A001003(n-1), n > 1.
Sum_{k=1..n} (-1)^(k-1)*t(n, k) = A080243(n-1).
Sum_{k=1..floor((n+1)/2)} t(n-k+1, k) = A026003(n-1). (End)

Extensions

More terms from David W. Wilson

A113413 A Riordan array of coordination sequences.

Original entry on oeis.org

1, 2, 1, 2, 4, 1, 2, 8, 6, 1, 2, 12, 18, 8, 1, 2, 16, 38, 32, 10, 1, 2, 20, 66, 88, 50, 12, 1, 2, 24, 102, 192, 170, 72, 14, 1, 2, 28, 146, 360, 450, 292, 98, 16, 1, 2, 32, 198, 608, 1002, 912, 462, 128, 18, 1, 2, 36, 258, 952, 1970, 2364, 1666, 688, 162, 20, 1, 2, 40, 326
Offset: 0

Views

Author

Paul Barry, Oct 29 2005

Keywords

Comments

Columns include A040000, A008574, A005899, A008412, A008413, A008414. Row sums are A078057(n)=A001333(n+1). Diagonal sums are A001590(n+3). Reverse of A035607. Signed version is A080246. Inverse is A080245.
For another version see A122542. - Philippe Deléham, Oct 15 2006
T(n,k) is the number of length n words on alphabet {0,1,2} with no two consecutive 1's and no two consecutive 2's and having exactly k 0's. - Geoffrey Critzer, Jun 11 2015
From Eric W. Weisstein, Feb 17 2016: (Start)
Triangle of coefficients (from low to high degree) of x^-n * vertex cover polynomial of the n-ladder graph P_2 \square p_n:
Psi_{L_1}: x*(2 + x) -> {2, 1}
Psi_{L_2}: x^2*(2 + 4 x + x^2) -> {2, 4, 1}
Psi_{L_3}: x^3*(2 + 8 x + 6 x^2 + x^3) -> {2, 8, 6, 1}
(End)
Let c(n, k), n > 0, be multiplicative sequences for some fixed integer k >= 0 with c(p^e, k) = T(e+k, k) for prime p and e >= 0. Then we have Dirichlet g.f.: Sum_{n>0} c(n, k) / n^s = zeta(s)^(2*k+2) / zeta(2*s)^(k+1). Examples: For k = 0 see A034444 and for k = 1 see A322328. Dirichlet convolution of c(n, k) and lambda(n) is Dirichlet inverse of c(n, k). - Werner Schulte, Oct 31 2022

Examples

			Triangle begins
  1;
  2,  1;
  2,  4,  1;
  2,  8,  6,  1;
  2, 12, 18,  8,  1;
  2, 16, 38, 32, 10,  1;
  2, 20, 66, 88, 50, 12,  1;
		

Crossrefs

Other versions: A035607, A119800, A122542, A266213.

Programs

  • Mathematica
    nn = 10; Map[Select[#, # > 0 &] &, CoefficientList[Series[1/(1 - 2 x/(1 + x) - y x), {x, 0, nn}], {x, y}]] // Grid (* Geoffrey Critzer, Jun 11 2015 *)
    CoefficientList[CoefficientList[Series[1/(1 - 2 x/(1 + x) - y x), {x, 0, 10}, {y, 0, 10}], x], y] (* Eric W. Weisstein, Feb 17 2016 *)
  • Sage
    T = lambda n,k : binomial(n, k)*hypergeometric([-k-1, k-n], [-n], -1).simplify_hypergeometric()
    A113413 = lambda n,k : 1 if n==0 and k==0 else T(n, k)
    for n in (0..12): print([A113413(n,k) for k in (0..n)]) # Peter Luschny, Sep 17 2014 and Mar 16 2016
    
  • Sage
    # Alternatively:
    def A113413_row(n):
        @cached_function
        def prec(n, k):
            if k==n: return 1
            if k==0: return 0
            return prec(n-1,k-1)+2*sum(prec(n-i,k-1) for i in (2..n-k+1))
        return [prec(n, k) for k in (1..n)]
    for n in (1..10): print(A113413_row(n)) # Peter Luschny, Mar 16 2016

Formula

From Paul Barry, Nov 13 2005: (Start)
Riordan array ((1+x)/(1-x), x(1+x)/(1-x)).
T(n, k) = Sum_{i=0..n-k} C(k+1, i)*C(n-i, k).
T(n, k) = Sum_{j=0..n-k} C(k+j, j)*C(k+1, n-k-j).
T(n, k) = D(n, k) + D(n-1, k) where D(n, k) = Sum_{j=0..n-k} C(n-k, j)*C(k, j)*2^j = A008288(n, k).
T(n, k) = T(n-1, k) + T(n-1, k-1) + T(n-2, k-1).
T(n, k) = Sum_{j=0..n} C(floor((n+j)/2), k)*C(k, floor((n-j)/2)). (End)
T(n, k) = C(n, k)*hypergeometric([-k-1, k-n], [-n], -1). - Peter Luschny, Sep 17 2014
T(n, k) = (Sum_{i=2..k+2} A137513(k+2, i) * (n-k)^(i-2)) / (k!) for 0 <= k < n (conjectured). - Werner Schulte, Oct 31 2022

A080243 Signed super-Catalan or little Schroeder numbers.

Original entry on oeis.org

1, -1, 3, -11, 45, -197, 903, -4279, 20793, -103049, 518859, -2646723, 13648869, -71039373, 372693519, -1968801519, 10463578353, -55909013009, 300159426963, -1618362158587, 8759309660445, -47574827600981, 259215937709463, -1416461675464871, 7760733824437545, -42624971294485657
Offset: 0

Views

Author

Paul Barry, Feb 13 2003

Keywords

Comments

Row sums of triangle A080245.

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, Exercise 2.7.12.(b).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(-1 + x + Sqrt[1 + 6 x + x^2]) /x / 4, {x, 0, 30}], x] (* Vincenzo Librandi, Aug 05 2013 *)
  • PARI
    x='x+O('x^66); Vec( (-1+x+sqrt(1+6*x+x^2))/x/4 ) \\ Joerg Arndt, Aug 15 2013

Formula

G.f.: (-1+x+sqrt(1+6*x+x^2))/x/4. - Vladeta Jovovic, Sep 27 2003
Conjecture: (n+1)*a(n) +3*(2*n-1)*a(n-1) +(n-2)*a(n-2)=0. - R. J. Mathar, Nov 26 2012
G.f.: 1 - x/(Q(0) + x) where Q(k) = 1 + k*(1+x) + x + x*(k+1)*(k+2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Mar 14 2013
a(n) ~ (-1)^n * sqrt(4+3*sqrt(2)) * (3+2*sqrt(2))^n /(4*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Aug 15 2013
G.f. A(x) satisfies: A(x) = (1 - 2*x*A(x)^2) / (1 - x). - Ilya Gutkovskiy, Jun 30 2020

A080244 Signed generalized Fibonacci numbers.

Original entry on oeis.org

1, -2, 7, -26, 107, -468, 2141, -10124, 49101, -242934, 1221427, -6222838, 32056215, -166690696, 873798681, -4612654808, 24499322137, -130830894666, 702037771647, -3783431872018, 20469182526595, -111133368084892, 605312629105205, -3306633429423460, 18111655081108453
Offset: 1

Views

Author

Paul Barry, Feb 13 2003

Keywords

Comments

Diagonal sums of triangle A080245

Crossrefs

|a(n)| = A006603.

Programs

  • Maple
    seq(coeff(convert(series((-1-x+2*x^2+sqrt(1+6*x+x^2))/(2*x*(1+x+x^2-x^3)),x,50),polynom),x,i),i=0..30); (C. Ronaldo)
  • Mathematica
    CoefficientList[Series[(-1 - x + 2 x^2 + Sqrt[1 + 6 x + x^2]) / (2 x (1 + x + x^2 - x^3)), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 05 2013 *)

Formula

G.f.: x*(-1-x+2*x^2+sqrt(1+6*x+x^2))/(2*x*(1+x+x^2-x^3)). - C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 19 2004
Conjecture: (n+1)*a(n) +(7*n-2)*a(n-1) +4*(2*n-1)*a(n-2) +6*(n-1)*a(n-3) +(-5*n+1)*a(n-4) +(-n+2)*a(n-5)=0. - R. J. Mathar, Nov 24 2012

Extensions

More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 19 2004
G.f. adapted to the offset by Vincenzo Librandi, Aug 05 2013

A122538 Riordan array (1, x*f(x)) where f(x)is the g.f. of A006318.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 6, 4, 1, 0, 22, 16, 6, 1, 0, 90, 68, 30, 8, 1, 0, 394, 304, 146, 48, 10, 1, 0, 1806, 1412, 714, 264, 70, 12, 1, 0, 8558, 6752, 3534, 1408, 430, 96, 14, 1, 0, 41586, 33028, 17718, 7432, 2490, 652, 126, 16, 1, 0, 206098, 164512, 89898, 39152, 14002, 4080, 938, 160, 18, 1
Offset: 0

Views

Author

Philippe Deléham, Sep 18 2006

Keywords

Comments

Triangle T(n,k), 0<=k<=n, read by rows, given by [0, 2, 1, 2, 1, 2, 1, ...] DELTA [1, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938 . Inverse is Riordan array (1, x*(1-x)/(1+x)).
T(n, r) gives the number of [0,r]-covering hierarchies with n segments terminating at r (see Kreweras work). - Michel Marcus, Nov 22 2014

Examples

			Triangle begins:
  1;
  0,    1:
  0,    2,    1;
  0,    6,    4,    1;
  0,   22,   16,    6,    1;
  0,   90,   68,   30,    8,   1;
  0,  394,  304,  146,   48,  10,  1;
  0, 1806, 1412,  714,  264,  70, 12,  1;
  0, 8558, 6752, 3534, 1408, 430, 96, 14, 1;
Production matrix is:
  0...1
  0...2...1
  0...2...2...1
  0...2...2...2...1
  0...2...2...2...2...1
  0...2...2...2...2...2...1
  0...2...2...2...2...2...2...1
  0...2...2...2...2...2...2...2...1
  0...2...2...2...2...2...2...2...2...1
  ... - _Philippe Deléham_, Feb 09 2014
		

Crossrefs

Another version : A080247, A080245, A033877.
Diagonals: A000012, A005843, A054000.
Sums include: A001003 (row and alternating sign), A006603 (diagonal).
Cf. A103885.

Programs

  • Magma
    function T(n,k) // T = A122538
      if k eq 0 then return 0^n;
      elif k eq n then return 1;
      else return T(n-1,k-1) + T(n-1,k) + T(n,k+1);
      end if;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 27 2024
  • Mathematica
    T[n_, n_]= 1; T[, 0]= 0; T[n, k_]:= T[n, k]= T[n-1, k-1] + T[n-1, k] + T[n, k+1];
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* Jean-François Alcover, Jun 13 2019 *)
  • Sage
    def A122538_row(n):
        @cached_function
        def prec(n, k):
            if k==n: return 1
            if k==0: return 0
            return prec(n-1,k-1)-2*sum(prec(n,k+i-1) for i in (2..n-k+1))
        return [(-1)^(n-k)*prec(n, k) for k in (0..n)]
    for n in (0..12): print(A122538_row(n)) # Peter Luschny, Mar 16 2016
    

Formula

T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n,k+1) if k > 0, with T(n, 0) = 0^n, and T(n, n) = 1.
Sum_{k=0..n} T(n, k) = A001003(n).
From G. C. Greubel, Oct 27 2024: (Start)
T(2*n, n) = A103885(n).
Sum_{k=0..n} (-1)^k*T(n, k) = -A001003(n-1).
Sum_{k=0..floor(n/2)} T(n-k, k) = [n=0] + 0*[n=1] + A006603(n-2)*[n>1]. (End)
Showing 1-6 of 6 results.