cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A006603 Generalized Fibonacci numbers.

Original entry on oeis.org

1, 2, 7, 26, 107, 468, 2141, 10124, 49101, 242934, 1221427, 6222838, 32056215, 166690696, 873798681, 4612654808, 24499322137, 130830894666, 702037771647, 3783431872018, 20469182526595, 111133368084892, 605312629105205, 3306633429423460, 18111655081108453
Offset: 0

Views

Author

Keywords

Comments

The Kn21 sums, see A180662, of the Schroeder triangle A033877 equal A006603(n) while the Kn3 sums equal A006603(2*n). The Kn22 sums, see A227504, and the Kn23 sums, see A227505, are also related to the sequence given above. - Johannes W. Meijer, Jul 15 2013
Typo on the right-hand side of Rogers's equation (1-x+x^2+x^3)*R^*(x) = R(x) + x: the sign in front of the x should be switched. - R. J. Mathar, Nov 23 2018

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 50);
    Coefficients(R!( (1-x-2*x^2 -Sqrt(1-6*x+x^2))/(2*x*(1-x+x^2+x^3)) )); // G. C. Greubel, Oct 27 2024
    
  • Maple
    A006603 := n-> add((k*add(binomial(n-k+2, i)*binomial(2*n-3*k-i+3, n-k+1), i= 0.. n-2*k+2))/(n-k+2), k= 1.. n/2+1): seq(A006603(n), n=0..24); # Johannes W. Meijer, Jul 15 2013
  • Mathematica
    CoefficientList[Series[(1-x-2x^2-Sqrt[1-6x+x^2])/(2x(1-x+x^2+x^3)),{x,0,30}],x] (* Harvey P. Dale, Jun 12 2016 *)
  • Maxima
    a(n):=sum((k*sum(binomial(n-k+2,i)*binomial(2*n-3*k-i+3,n-k+1),i,0,n-2*k+2))/(n-k+2),k,1,n/2+1); /* Vladimir Kruchinin, Oct 23 2011 */
    
  • SageMath
    def A006603_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-x-2*x^2 -sqrt(1-6*x+x^2))/(2*x*(1-x+x^2+x^3)) ).list()
    A006603_list(50) # G. C. Greubel, Oct 27 2024

Formula

a(n) = abs(A080244(n-1)).
G.f.: (1 - x - 2*x^2 - sqrt(1 - 6*x + x^2))/(2*x*(1 - x + x^2 + x^3)).
G.f.: (A006318(x) - x)/(1 - x + x^2 + x^3).
a(n) = Sum_{k=1..floor(n/2)+1} k*(1/(n-k+2))*Sum_{i=0..n-2*k+2} C(n-k+2,i)*C(2*n-3*k-i+3,n-k+1). - Vladimir Kruchinin, Oct 23 2011
(n+1)*a(n) -(7*n-2)*a(n-1) +4*(2*n-1)*a(n-2) -6*(n-1)*a(n-3) -(5*n-1)*a(n-4) +(n-2)*a(n-5) = 0. - R. J. Mathar, Nov 23 2018

Extensions

More terms from Emeric Deutsch, Feb 28 2004

A080245 Inverse of coordination sequence array A113413.

Original entry on oeis.org

1, -2, 1, 6, -4, 1, -22, 16, -6, 1, 90, -68, 30, -8, 1, -394, 304, -146, 48, -10, 1, 1806, -1412, 714, -264, 70, -12, 1, -8558, 6752, -3534, 1408, -430, 96, -14, 1, 41586, -33028, 17718, -7432, 2490, -652, 126, -16, 1
Offset: 0

Views

Author

Paul Barry, Feb 13 2003

Keywords

Comments

Formal inverse of A035607 when written as lower triangular matrix 1 2 1 2 4 1 ...

Examples

			Rows are {1}, {-2, 1}, {6, -4, 1}, {-22, 16, -6, 1}, ....
From _Paul Barry_, Apr 28 2009: (Start)
Triangle begins
  1,
  -2, 1,
  6, -4, 1,
  -22, 16, -6, 1,
  90, -68, 30, -8, 1,
  -394, 304, -146, 48, -10, 1,
  1806, -1412, 714, -264, 70, -12, 1
Production matrix is
  -2, 1,
  2, -2, 1,
  -2, 2, -2, 1,
  2, -2, 2, -2, 1,
  -2, 2, -2, 2, -2, 1,
  2, -2, 2, -2, 2, -2, 1,
  -2, 2, -2, 2, -2, 2, -2, 1 (End)
		

Crossrefs

Row sums are signed little Schroeder numbers A080243. Diagonal sums are given by A080244.
Essentially same triangle as A033877 but with rows read in reversed order.

Formula

Essentially the same as the triangle T(n, k), for n>0 and k>0, given by [0, -2, -1, -2, -1, -2, -1, -2, ...] DELTA A000007. Triangle (unsigned) given by [0, 2, 1, 2, 1, 2, 1, 2, ...] DELTA A000007, where DELTA is Deléham's operator defined in A084938.
Riordan array ((sqrt(1+6x+x^2)-x-1)/(2x), (sqrt(1+6x+x^2)-x-1)/2).
Showing 1-2 of 2 results.