cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A113432 Pierpont semiprimes: semiprimes of the form (2^K)*(3^L)+1.

Original entry on oeis.org

4, 9, 10, 25, 33, 49, 55, 65, 82, 129, 145, 217, 289, 649, 865, 973, 1537, 1945, 2049, 2305, 3073, 4097, 4609, 5833, 6145, 6913, 8193, 8749, 9217, 11665, 13123, 15553, 20737, 23329, 24577, 27649, 31105, 34993, 41473, 62209, 69985, 73729, 78733
Offset: 1

Views

Author

Jonathan Vos Post, Nov 01 2005

Keywords

Examples

			a(1) = 4 = (2^0)*(3^1)+1 = 2^2 hence the semiprime A001358(1).
a(2) = 9 = (2^3)*(3^0)+1 = 3^2 hence the semiprime A001358(3).
a(3) = 10 = (2^0)*(3^2)+1 = 2 * 5 hence the semiprime A001358(4).
a(4) = 25 = (2^3)*(3^1)+1 = 5^2 hence the semiprime A001358(9).
a(5) = 33 = (2^5)*(3^0)+1 = 3 * 11 hence the semiprime A001358(11).
a(6) = 49 = (2^4)*(3^1)+1 = 7^2 hence the semiprime A001358(17).
a(7) = 55 = (2^1)*(3^3)+1 = 5 * 11 hence the semiprime A001358(19).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^5], Plus @@ Last /@ FactorInteger[ # ] == 2 && Max @@ First /@ FactorInteger[ # - 1] < 5 &] (* Ray Chandler, Jan 24 2006 *)

Formula

{a(n)} = Intersection of {(2^K)*(3^L)+1} A055600 and semiprimes A001358. a(n) is in this sequence iff there exist nonnegative integers K and L such that Omega((2^K)*(3^L)+1) = 2.

A113434 Semi-Pierpont semiprimes which are also Pierpont semiprimes.

Original entry on oeis.org

4, 9, 10, 25, 49, 65, 289
Offset: 1

Views

Author

Jonathan Vos Post, Nov 01 2005

Keywords

Comments

Semiprimes both of whose prime factors are Pierpont primes (A005109), which are primes of the form (2^K)*(3^L)+1 and where the semiprime is itself of the form (2^K)*(3^L)+1.
No more under 10^50; what is the next element of this sequence?
No more terms <= 10^100. - Robert Israel, Mar 10 2017
This sequence is complete, see Links. - Charlie Neder, Feb 04 2019

Examples

			a(1) = 4 = 2^2 = [(2^0)*(3^0)+1]*[(2^0)*(3^0)+1] = (2^0)*(3^1)+1.
a(2) = 9 = 3^2 = [(2^1)*(3^0)+1]*[(2^1)*(3^0)+1] = (2^3)*(3^0)+1.
a(3) = 10 = 2*5 = [(2^0)*(3^0)+1]*[(2^2)*(3^0)+1] = (2^0)*(3^2)+1.
a(4) = 25 = 5^2 = [(2^2)*(3^0)+1]*[(2^2)*(3^0)+1] = (2^3)*(3^1)+1.
a(5) = 49 = 7^2 = [(2^1)*(3^1)+1]*[(2^1)*(3^1)+1] = (2^4)*(3^1)+1.
a(6) = 65 = 5*13 = [(2^2)*(3^0)+1]*[(2^2)*(3^1)+1] = (2^6)*(3^0)+1.
a(7) = 289 = 17^2 = [(2^4)*(3^0)+1]*[(2^4)*(3^0)+1] = (2^5)*(3^2)+1.
		

Crossrefs

Programs

  • Maple
    N:= 10^100: # to get all terms <= N
    PP:= select(isprime, {seq(seq(1+2^i*3^j, i=0..ilog2((N-1)/3^j)),j=0..floor(log[3](N-1)))}):
    SP:= select(t -> t <= N and t = 1+2^padic:-ordp(t-1,2)*3^padic:-ordp(t-1,3), [seq(seq(PP[i]*PP[j], j=1..i),i=1..nops(PP))]):
    sort(convert(SP,list)); # Robert Israel, Mar 10 2017

Formula

{a(n)} = intersection of A113432 and A113433. {a(n)} = Semiprimes A001358 of the form (2^K)*(3^L)+1 both of whose factors are of the form (2^K)*(3^L)+1. {a(n)} = {integers P such that, for nonnegative integers I, J, K, L, m, n there is a solution to (2^I)*(3^J)+1 = [(2^K)*(3^L)+1]*[(2^m)*(3^n)+1] where both [(2^K)*(3^L)+1] and [(2^m)*(3^n)+1] are prime}.
Showing 1-2 of 2 results.