cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A226477 Table (read by rows) of the natural numbers (in ascending order) whose reciprocals have only periodic decimals of length k.

Original entry on oeis.org

1, 3, 9, 11, 33, 99, 27, 37, 111, 333, 999, 101, 303, 909, 1111, 3333, 9999, 41, 123, 271, 369, 813, 2439, 11111, 33333, 99999, 7, 13, 21, 39, 63, 77, 91, 117, 143, 189, 231, 259, 273, 297, 351, 407, 429, 481, 693, 777, 819, 1001, 1221, 1287, 1443, 2079, 2331, 2457, 2849, 3003, 3367, 3663, 3861, 4329, 5291, 6993, 8547, 9009, 10101, 10989, 12987, 15873, 25641, 27027, 30303, 37037, 47619, 76923, 90909, 111111, 142857, 333333, 999999
Offset: 1

Views

Author

Martin Renner, Jun 08 2013

Keywords

Comments

The k-th row always ends with 10^k - 1 = 99..99 (k times 9).
The number of elements in row k is A059892(k).

Examples

			The table T(k,m), m = 1..A059892(k), begins
  1, 3, 9;
  11, 33, 99;
  27, 37, 111, 333, 999;
  etc.
		

Crossrefs

Programs

  • Maple
    a:=[1,3,9]: S:={1,3,9}: for k from 2 to 6 do T:=numtheory[divisors](10^k-1): a:=[op(a),op(T minus S)]: S:=S union T; od: a;
  • PARI
    Row(n) = my(v=divisors(10^n-1)); select(x->(znorder(Mod(10,x))==n), v) \\ Jianing Song, Jun 15 2021

A245029 Divisors of 3^36 - 1.

Original entry on oeis.org

1, 2, 4, 5, 7, 8, 10, 13, 14, 16, 19, 20, 26, 28, 35, 37, 38, 40, 52, 56, 65, 70, 73, 74, 76, 80, 91, 95, 104, 112, 130, 133, 140, 146, 148, 152, 182, 185, 190, 208, 247, 259, 260, 266, 280, 292, 296, 304, 364, 365, 370, 380, 455, 481, 494, 511, 518, 520
Offset: 1

Views

Author

Bruno Berselli, Jul 10 2014

Keywords

Comments

Also, divisors of 9^18-1. Number of divisors of k^18-1 for k = 2..20: 32 (2), 128 (3), 512 (4), 512 (5), 128 (6), 640 (7), 160 (8), 1280 (9), 640 (10), 1024 (11), 512 (12), 2048 (13), 1024 (14), 1536 (15), 8192 (16), 3840 (17), 512 (18), 5120 (19), 512 (20).

Examples

			150094635296999120 = 2^4 * 5 * 7 * 13 * 19 * 37 * 73 * 757 * 530713.
		

Crossrefs

Cf. A018614: divisors of 3^6-1.
Cf. A113522: divisors of 10^18-1; A003543: divisors of 2^36-1.

Programs

  • Magma
    Divisors(3^36-1);
    
  • Mathematica
    Divisors[3^36 - 1]
  • Maxima
    divisors(3^36-1);
  • PARI
    divisors(3^36-1)
    
  • Sage
    divisors(3^36-1)
    
Showing 1-2 of 2 results.