cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113531 a(n) = 1 + 2*n + 3*n^2 + 4*n^3 + 5*n^4 + 6*n^5.

Original entry on oeis.org

1, 21, 321, 2005, 7737, 22461, 54121, 114381, 219345, 390277, 654321, 1045221, 1604041, 2379885, 3430617, 4823581, 6636321, 8957301, 11886625, 15536757, 20033241, 25515421, 32137161, 40067565, 49491697, 60611301, 73645521
Offset: 0

Views

Author

Jonathan Vos Post, Jan 12 2006

Keywords

Comments

1 + 2x + 3x^2 + 4x^3 + 5x^4 + 6x^5 is the derivative of 1 + x + x^2 + x^3 + x^4 + x^5 + x^6 = (n^7 - 1)/(n-1). a(6) = 1 + 2*6 + 3*6^2 + 4*6^3 + 5*6^4 + 6*6^5 = 54121 is prime, the smallest prime in the sequence. The next is a(a(1)) = a(21) = 1 + 2*21 + 3*21^2 + 4*21^3 + 5*21^4 + 6*21^5 = 25515421. Then a(24) = 49491697.

Crossrefs

Programs

  • Mathematica
    With[{eq=Total[# n^(#-1)&/@Range[6]]},Table[eq,{n,0,30}]] (* or *) LinearRecurrence[{6,-15,20,-15,6,-1},{1,21,321,2005,7737,22461},30] (* Harvey P. Dale, Nov 02 2011 *)
  • PARI
    for(n=0,50, print1(1 + 2*n + 3*n^2 + 4*n^3 + 5*n^4 + 6*n^5, ", ")) \\ G. C. Greubel, Mar 15 2017

Formula

a(n) = 1 + 2*n + 3*n^2 + 4*n^3 + 5*n^4 + 6*n^5.
O.g.f.: 2064/(-1+x)^4+3/(-1+x)+2040/(-1+x)^5+132/(-1+x)^2+720/(-1+x)^6+872/(-1+x)^3 . - R. J. Mathar, Feb 26 2008
a(n) = 6*a(n-1)-15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6), a(0)=1, a(1)=21, a(2)=321, a(3)=2005, a(4)=7737, a(5)=22461. - Harvey P. Dale, Nov 02 2011

Extensions

Corrected by R. J. Mathar, Feb 26 2008