A113533 Ascending descending base exponent transform of the infinite Fibonacci word (A003842).
1, 3, 6, 5, 7, 12, 10, 15, 14, 14, 23, 16, 20, 27, 21, 30, 27, 25, 40, 28, 37, 38, 32, 49, 36, 40, 53, 39, 54, 49, 43, 68, 45, 55, 66, 50, 71, 60, 56, 83, 57, 74, 75, 61, 92, 67, 73, 94, 68, 93, 84, 72, 113, 75, 94, 101, 79, 116, 89, 91, 122, 86, 115, 108, 90
Offset: 1
Examples
a(1) = A003842(1)^A003842(1) = 1^1 = 1. a(2) = A003842(1)^A003842(2) + A003842(2)^A003842(1) = 1^2 + 2^1 = 3. a(3) = 1^1 + 2^2 + 1^1 = 6. a(4) = 1^1 + 2^1 + 1^2 + 1^1 = 5. a(5) = 1^2 + 2^1 + 1^1 + 1^2 + 2^1 = 7. a(6) = 1^1 + 2^2 + 1^1 + 1^1 + 2^2 + 1^1 = 12. a(7) = 1^2 + 2^1 + 1^2 + 1^1 + 2^1 + 1^2 + 2^1 = 10. a(8) = 1^1 + 2^2 + 1^1 + 1^2 + 2^1 + 1^1 + 2^2 + 1^1 = 15. a(9) = 1^1 + 2^1 + 1^2 + 1^1 + 2^2 + 1^1 + 2^1 + 1^2 + 1^1 = 14. a(10) = 1^2 + 2^1 + 1^1 + 1^2 + 2^1 + 1^2 + 2^1 + 1^1 + 1^2 + 2^1 = 14.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
A003842[n_] := n + 1 - Floor[((1 + Sqrt[5])/2)*Floor[2*(n + 1)/(1 + Sqrt[5])]]; Table[Sum[A003842[k]^(A003842[n - k + 1]), {k, 1, n}], {n, 1, 50}] (* G. C. Greubel, May 18 2017 *)
Formula
Extensions
Corrected and extended by Giovanni Resta, Jun 13 2016
Comments