A113534 Ascending descending base exponent transform of the flipped tribonacci substitution (A092782).
1, 3, 6, 7, 20, 10, 39, 12, 26, 19, 20, 43, 21, 78, 24, 53, 30, 57, 43, 88, 61, 59, 56, 43, 90, 42, 155, 46, 109, 53, 122, 75, 105, 114, 73, 122, 62, 197, 63, 172, 71, 136, 96, 183, 140, 122, 139, 86, 179, 81, 304, 83, 185, 98, 153, 162, 160, 261, 121, 192, 107, 236, 126
Offset: 1
Examples
a(1) = A092782(1)^A092782(1) = 1^1 = 1. a(2) = A092782(1)^A092782(2) + A092782(2)^A092782(1) = 1^2 + 2^1 = 3. a(3) = 1^1 + 2^2 + 1^1 = 6. a(4) = 1^3 + 2^1 + 1^2 + 3^1 = 7. a(5) = 1^1 + 2^3 + 1^1 + 3^2 + 1^1 = 20. a(6) = 1^2 + 2^1 + 1^3 + 3^1 + 1^2 + 2^1 = 10. a(7) = 1^1 + 2^2 + 1^1 + 3^3 + 1^1 + 2^2 + 1^1 = 39. a(8) = 1^1 + 2^1 + 1^2 + 3^1 + 1^3 + 2^1 + 1^2 + 1^1 = 12. a(9) = 1^2 + 2^1 + 1^1 + 3^2 + 1^1 + 2^3 + 1^1 + 1^2 + 2^1 = 26. a(10) = 1^1 + 2^2 + 1^1 + 3^1 + 1^2 + 2^1 + 1^3 + 1^1 + 2^2 + 1^1 = 19. a(11) = 1^3 + 2^1 + 1^2 + 3^1 + 1^1 + 2^2 + 1^1 + 1^3 + 2^1 + 1^2 + 3^1 = 20. a(12) = 1^1 + 2^3 + 1^1 + 3^2 + 1^1 + 2^1 + 1^2 + 1^1 + 2^3 + 1^1 + 3^2 + 1^1 = 43.
Links
- V. F. Sirvent, Semigroups and the self-similar structure of the flipped tribonacci substitution, Applied Math. Letters, 12 (1999), 25-29. [Contains many further references.]
Crossrefs
Programs
-
Mathematica
A092782[n_] := Nest[Function[l, {Flatten[(l /. {1 -> {1, 2}, 2 -> {1, 3}, 3 -> {1}})]}], {1}, n][[1]]; Table[Sum[(A092782[k][[k]])^((A092782[n - k + 1][[n - k + 1]])), {k, 1, n}], {n, 1, 10}] (* G. C. Greubel, May 18 2017 *)
Formula
Extensions
a(3) corrected by Giovanni Resta, Jun 13 2016
a(13) onward from G. C. Greubel, May 18 2017
Comments