cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A113924 a(n) = gcd(A113605(n+1), A113605(n)). Also, for n >= 2, a(n) = A113605(n+2) - A113605(n-1).

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 1, 4, 1, 1, 5, 1, 2, 1, 1, 1, 1, 8, 1, 3, 1, 1, 2, 1, 1, 1, 11, 2, 1, 1, 1, 1, 2, 1, 1, 5, 1, 4, 1, 1, 1, 1, 2, 19, 1, 1, 1, 10, 1, 7, 3, 1, 2, 1, 1, 1, 1, 6, 1, 1, 1, 5, 6, 1, 1, 1, 1, 2, 1, 3, 7, 1, 4, 1, 1, 1, 5, 2, 1, 1, 1, 1, 2, 1, 1
Offset: 1

Views

Author

Leroy Quet, Jan 30 2006

Keywords

Crossrefs

Cf. A113605.

Programs

Extensions

More terms from R. J. Mathar, Jan 31 2008
More terms from Jinyuan Wang, Aug 10 2021

A129449 Expansion of psi(-x) * psi(-x^3) in powers of x where psi() is a Ramanujan theta function.

Original entry on oeis.org

1, -1, 0, -2, 1, 0, 2, 0, 0, -2, 2, 0, 1, -1, 0, -2, 0, 0, 2, -2, 0, -2, 0, 0, 3, 0, 0, 0, 2, 0, 2, -2, 0, -2, 0, 0, 2, -1, 0, -2, 1, 0, 0, 0, 0, -4, 2, 0, 2, 0, 0, -2, 0, 0, 2, -2, 0, 0, 2, 0, 1, 0, 0, -2, 2, 0, 4, 0, 0, -2, 0, 0, 0, -3, 0, -2, 0, 0, 2, 0, 0, -2, 0, 0, 3, -2, 0, -2, 0, 0, 2, -2, 0, 0, 2, 0, 2, 0, 0, -2, 2, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Apr 16 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 53 of the 74 eta-quotients listed in Table I of Martin (1996).

Examples

			G.f. = 1 - x - 2*x^3 + x^4 + 2*x^6 - 2*x^9 + 2*x^10 + x^12 - x^13 - 2*x^15 + ...
G.f. = q - q^3 - 2*q^7 + q^9 + 2*q^13 - 2*q^19 + 2*q^21 + q^25 - q^27 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, Pi/4, x^(1/2)] EllipticTheta[ 2, Pi/4, x^(3/2)] / (2 x^(1/2)), {x, 0, n}]; (* Michael Somos, Jul 09 2015 *)
    a[ n_] := With[ {m = 2 n + 1}, If[ m < 1, 0, Sum[ KroneckerSymbol[ 12, d] KroneckerSymbol[ -4, m/d], {d, Divisors[ m]}]]]; (* Michael Somos, Jul 09 2015 *)
  • PARI
    {a(n) = if( n<0, 0, n = 2*n + 1; sumdiv( n, d, kronecker( -4, d) * kronecker( 12, n/d)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^3 + A) * eta(x^4 + A) * eta(x^12 + A)/ (eta(x^2 + A) * eta(x^6 + A)), n))};

Formula

Expansion of q^(-1/2) * eta(q) * eta(q^3) * eta(q^4) * eta(q^12) / (eta(q^2) * eta(q^6)) in powers of q.
Euler transform of period 12 sequence [ -1, 0, -2, -1, -1, 0, -1, -1, -2, 0, -1, -2, ...].
a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(3^e) = (-1)^e, b(p^e) = (1 + (-1)^e) / 2 if p == 5, 11 (mod 12), b(p^e) = e+1 if p == 1 (mod 12), b(p^e) = (-1)^e * (e+1) if p == 7 (mod 12).
G.f. is a period 1 Fourier series which satisfies f(-1 / (48 t)) = 48^(1/2) (t/i) f(t) where q = exp(2 Pi i t).
a(n) = (-1)^n * A033762(n). a(2*n) = A112604(n). a(2*n + 1) = -A112605(n). a(3*n) = A129451(n). a(3*n + 1) = -a(n). a(3*n + 2) = 0.
a(4*n) = A112606(n). a(4*n + 1) = - A112608(n). a(4*n + 2) = 2 * A112607(n). a(4*n + 3) = - 2 * A112609(n).
a(6*n) = A123884(n). a(6*n + 3) = -2 * A121361(n).

A113604 Define f(k) = k + sum of digits of n. a(n) is the first prime that results by applying f zero or more times to n, or 0 if no such prime exists.

Original entry on oeis.org

2, 2, 3, 23, 5, 0, 7, 23, 0, 11, 11, 0, 13, 19, 0, 23, 17, 0, 19, 41, 0, 41, 23, 0, 37, 41, 0, 101, 29, 0, 31, 37, 0, 41, 43, 0, 37, 101, 0, 59, 41, 0, 43, 59, 0, 67, 47, 0, 101, 89, 0, 59, 53, 0, 89, 67, 0, 71, 59, 0, 61, 101, 0, 127, 89, 0, 67, 103, 0, 101, 71, 0, 73, 127, 0, 89
Offset: 1

Views

Author

Amarnath Murthy, Nov 09 2005

Keywords

Comments

a(n) = n for n prime; a(n) = 0 for n > 3 and n == 0 (mod 3).
Conjecture: a(n) = 0 only if n == 0 (mod 3).

Examples

			a(4) = 23 since f(4) = 4+4 = 8, f(8) = 8+8 = 16, f(16) = 16+1+6 = 23.
		

Crossrefs

Cf. A113605.

Programs

  • PARI
    f(n) = local(k,s,d);k=n;s=0;while(k>0,d=divrem(k,10);k=d[1];s=s+d[2]);s+n {m=76;for(n=1,m,if(n>3&&n%3==0,print1(0,","),k=n;z=1000*n;while(k
    				

Extensions

Edited and extended by Klaus Brockhaus, Nov 10 2005
Showing 1-3 of 3 results.