A113650 Fibonacci(p-J(p,5)) mod p^2, where p is the n-th prime and J is the Jacobi symbol.
2, 3, 5, 21, 55, 39, 272, 57, 345, 754, 775, 481, 1599, 1677, 752, 1484, 590, 2928, 469, 3905, 4234, 3871, 1743, 445, 3589, 9797, 2266, 2568, 2834, 6780, 1651, 8384, 7946, 16263, 17880, 9060, 6908, 26080, 7348, 22490, 31146, 23711, 17954, 5983
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Wall-Sun-Sun Prime
Crossrefs
Cf. A113649.
Programs
-
Mathematica
a[n_]:= ( p=Prime[n];Mod[Fibonacci[p-JacobiSymbol[p, 5]], Power[p, 2]]); Table[a[n], {n,1,50}] (* Javier Rivera Romeu, Mar 03 2022 *)
-
PARI
a(n)=my(p=prime(n));lift(Mod([1,1;1,0]^(p-kronecker(p,5)),p^2)[1,2]) \\ Charles R Greathouse IV, Oct 31 2011
-
Sage
def a(n): p = Primes().unrank(n-1) return fibonacci(p-jacobi_symbol(p, 5))%pow(p, 2) for n in range(1, 100): print(a(n), end=", ") # Javier Rivera Romeu, Mar 04 2022
Comments