A113705 Inverse Moebius transform of powers of 10.
1, 10, 110, 1010, 10110, 100010, 1001110, 10000010, 100010110, 1000001010, 10000100110, 100000000010, 1000001011110, 10000000000010, 100000010000110, 1000000000101010, 10000000100010110, 100000000000000010, 1000000001001001110, 10000000000000000010, 100000000010000110110
Offset: 0
Examples
From _Michael De Vlieger_, May 24 2017: (Start) First 20 terms of a(n), replacing zeros with "." to more clearly show positions of 1s in positions corresponding to terms in row n of A027750. This chart also pertains to terms of A055895 written in binary. n a(n) A027750(n) --------------------------------------- 0: 1 {} 1: 1. 1 2: 11. 1,2 3: 1.1. 1,3 4: 1.11. 1,2,4 5: 1...1. 1,5 6: 1..111. 1,2,3,6 7: 1.....1. 1,7 8: 1...1.11. 1,2,4,8 9: 1.....1.1. 1,3,9 10: 1....1..11. 1,2,5,10 11: 1.........1. 1,11 12: 1.....1.1111. 1,2,3,4,6,12 13: 1...........1. 1,13 14: 1......1....11. 1,2,7,14 15: 1.........1.1.1. 1,3,5,15 16: 1.......1...1.11. 1,2,4,8,16 17: 1...............1. 1,17 18: 1........1..1..111. 1,2,3,6,9,18 19: 1.................1. 1,19 20: 1.........1....11.11. 1,2,4,5,10,20 (End)
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..999
Programs
-
Mathematica
Table[If[n == 0, 1, Total[10^Divisors[n]]], {n, 0, 20}] (* or *) Table[If[n == 0, 1, Sum[If[Mod[n, k] == 0, 10^k, 0], {k, n}]], {n, 0, 20}] (* or *) Table[Boole[n == 0] + Total@ MapIndexed[Boole[Divisible[n, #1]]*10^First@ #2 &, Range@ n], {n, 0, 20}] (* or *) Table[If[n == 0, 1, Function[d, FromDigits @Reverse@ ReplacePart[#, Map[# + 1 -> 1 &, d]] &@ ConstantArray[0, n + 1]]@ Divisors@ n], {n, 0, 20}] (* Michael De Vlieger, May 24 2017 *)
-
PARI
a(n) = if (n==0, 1, sum(k=1, n, if (! (n % k), 10^k))); \\ Michel Marcus, May 23 2017
Formula
a(n) = Sum_{k=0..n} if(mod(n, k)=0, 10^k, 0).
G.f.: Sum_{k>=1} 10^k*x^k/(1 - x^k). - Ilya Gutkovskiy, May 23 2017
Comments