cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A113710 a(n) = A113709(n)/(prime(n+1) - prime(n)).

Original entry on oeis.org

2, 3, 2, 6, 4, 9, 5, 4, 15, 6, 10, 21, 11, 8, 9, 30, 11, 17, 36, 13, 20, 14, 12, 25, 51, 26, 54, 28, 9, 32, 22, 69, 14, 75, 26, 27, 41, 28, 29, 90, 19, 96, 49, 99, 17, 18, 56, 114, 58, 39, 120, 25, 42, 43, 44, 135, 46, 70, 141, 29, 21, 77, 156, 79, 23, 56, 34, 174, 88, 59, 45, 62
Offset: 2

Views

Author

Leroy Quet, Nov 06 2005

Keywords

Comments

Records are in A040040. - Andres Cicuttin, Nov 26 2016

Examples

			Between the primes 67 and 71 is the composite 68 and 68 is divisible by (71-67)=4. So 68/(71-67)= 17 is in the sequence.
		

Crossrefs

Cf. A113709.

Formula

a(n) = floor(p(n+1)/(p(n+1)-p(n))) = ceiling(p(n)/(p(n+1)-p(n))), where p(n) is the n-th prime. - Leroy Quet, Feb 03 2007
a(n) = A113709(n)/A001223(n). - Omar E. Pol, Nov 26 2016

Extensions

More terms from R. J. Mathar, Aug 31 2007

A133555 Order of A113709(n) among composite positive integers.

Original entry on oeis.org

1, 2, 3, 6, 9, 10, 11, 14, 19, 24, 27, 28, 29, 32, 37, 42, 47, 48, 51, 56, 57, 60, 71, 74, 75, 76, 79, 82, 95, 96, 99, 104, 105, 114, 119, 124, 125, 128, 133, 138, 147, 148, 151, 152, 157, 168, 175, 178, 181, 182, 187, 196, 197, 202, 207, 212, 217, 220, 221, 228, 231
Offset: 2

Views

Author

Leroy Quet, Dec 25 2007

Keywords

Examples

			The 10th prime - the 9th prime = 29-23 = 6. The integer between 23 and 29 that is divisible by 6 is 24. 24 is the 14th composite, so a(9) = 14.
		

Crossrefs

Programs

  • Maple
    A113709 := proc(n) local d,a ; d := ithprime(n+1)-ithprime(n) ; for a from ithprime(n)+1 do if a mod d = 0 then RETURN(a) ; fi ; od: end: A066246 := proc(n) local a,i; if n = 1 or isprime(n) then 0 ; else a := 0 ; for i from 4 to n do if not isprime(i) then a := a+1 ; fi ; od: RETURN(a) ; fi ; end: A133555 := proc(n) A066246(A113709(n)) ; end: seq(A133555(n),n=2..80) ; # R. J. Mathar, Jan 12 2008
  • Mathematica
    compositePi[n_] := n - PrimePi[n] - 1;
    a[n_] := Module[{p1 = Prime[n], p2 = Prime[n+1], c}, c = SelectFirst[ Range[p1+1, p2-1], Divisible[#, p2-p1]&]; compositePi[c]];
    Table[a[n], {n, 2, 62}] (* Jean-François Alcover, Apr 02 2024 *)

Formula

a(n) = A066246(A113709(n)). - R. J. Mathar, Jan 12 2008

Extensions

More terms from R. J. Mathar, Jan 12 2008

A111379 Composite numbers n which are divisible by (nextprime(n) - prevprime(n)), but have fewer divisors than some number between those two primes.

Original entry on oeis.org

68, 126, 140, 162, 164, 174, 204, 258, 290, 294, 316, 322, 392, 410, 444, 456, 488, 496, 516, 550, 558, 624, 654, 676, 678, 688, 704, 710, 732, 772, 784, 790, 804, 820, 824, 830, 856, 868, 908, 920, 942, 948, 966, 978, 984, 1030, 1038, 1060, 1068, 1098
Offset: 1

Views

Author

Leroy Quet, Nov 07 2005

Keywords

Examples

			68 is there because it is divisible by (71-67), but 70 has more divisors.
		

Crossrefs

Programs

  • Maple
    q:= 2: count:= 0: R:= NULL:
    while count < 100 do
      p:= q; q:= nextprime(p);
      v:= q-p;
      m:= max({seq(numtheory:-tau(i),i=p+1 .. q-1)});
      S:= select(t -> numtheory:-tau(t) < m, [seq(i*v,i=ceil((p+1)/v) .. floor((q-1)/v))]);
      count:= count + nops(S);
      R:= R, op(S)
    od:
    R; # Robert Israel, Jun 03 2024

Extensions

Edited by Don Reble, Nov 07 2005

A113728 a(n) is the integer between p(n) and p(n+2) which is divisible by (p(n+2)-p(n)), where p(n) is the n-th prime.

Original entry on oeis.org

3, 4, 6, 12, 12, 18, 18, 20, 24, 32, 40, 42, 42, 50, 48, 56, 64, 70, 72, 72, 80, 80, 84, 96, 102, 102, 108, 108, 126, 126, 130, 136, 144, 144, 152, 156, 160, 170, 168, 176, 180, 192, 192, 198, 210, 216, 224, 228, 228, 230, 240, 240, 256, 252, 264, 264, 272, 280
Offset: 1

Views

Author

Leroy Quet, Nov 08 2005

Keywords

Comments

Exactly one integer exists between each p(n+2) and p(n) which is divisible by (p(n+2)-p(n)).

Examples

			Between the primes 19 and 29 is the composite 20 and 20 is divisible by (29-19)=10. So 20 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    For[n = 1, n < 50, n++, s := Prime[n] + 1; While[Floor[s/(Prime[n + 2] -Prime[n])] != s/(Prime[n + 2] - Prime[n]), s++ ]; Print[s]] (* Stefan Steinerberger, Feb 10 2006 *)
    idp[n_]:=Module[{p1=Prime[n],p2=Prime[n+2]},Select[Range[p1+1,p2-1],Divisible[ #,p2-p1]&]]; Table[idp[n],{n,60}]//Flatten (* Harvey P. Dale, May 30 2021 *)

Formula

a(n) = A031131(n)*ceiling(A000040(n)/A031131(n)). - R. J. Mathar, Aug 31 2007

Extensions

More terms from Stefan Steinerberger, Feb 10 2006
More terms from R. J. Mathar, Aug 31 2007

A113729 a(n) is the integer between p(n) and p(n+3) which is divisible by (p(n+3)-p(n)), where p(n) is the n-th prime.

Original entry on oeis.org

5, 8, 8, 10, 16, 20, 24, 24, 28, 36, 36, 40, 48, 48, 56, 56, 60, 72, 72, 72, 80, 90, 90, 98, 100, 104, 110, 120, 110, 120, 132, 144, 140, 144, 154, 160, 160, 176, 168, 180, 182, 192, 192, 198, 208, 224, 216, 230, 228, 240, 234, 252, 242, 252, 266, 266, 276, 276
Offset: 1

Views

Author

Leroy Quet, Nov 08 2005

Keywords

Comments

Exactly one integer exists between each p(n+3) and p(n) which is divisible by (p(n+3)-p(n)).

Examples

			Between the primes 19 and 31 is the composite 24 and 24 is divisible by (31-19)=12. So 24 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{p = Prime[n], q = Prime[n + 3]}, q - Mod[p, q - p]]; Table[ f[n], {n, 58}] (* Robert G. Wilson v *)
    id[{a_,b_,c_,d_}]:=Select[Range[a+1,d-1],Divisible[#,d-a]&]; Flatten[ id/@ Partition[Prime[Range[70]],4,1]] (* Harvey P. Dale, May 07 2015 *)

Formula

a(n)=p(n+3) - (p(n) (mod p(n+3)-p(n))).

Extensions

More terms from Robert G. Wilson v, Nov 09 2005

A118335 a(n)= smallest multiple of (prime(n+1)-prime(n)) which is >= prime(n+1), where prime(m) is the m-th prime.

Original entry on oeis.org

3, 6, 8, 12, 14, 20, 20, 24, 30, 32, 42, 44, 44, 48, 54, 60, 62, 72, 72, 74, 84, 84, 90, 104, 104, 104, 108, 110, 116, 140, 132, 138, 140, 150, 152, 162, 168, 168, 174, 180, 182, 200, 194, 200, 200, 216, 228, 228, 230, 236, 240, 242, 260, 258, 264, 270, 272, 282
Offset: 1

Views

Author

Leroy Quet, Apr 25 2006

Keywords

Comments

a(n) < a(n-1) for n: 31,43,54,83,98,100,116,122,140,142,155,163,169,173,178,..., . - Robert G. Wilson v, Apr 27 2006

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{m = Prime[n + 1] - Prime[n]}, k = Mod[m, Prime[n + 1]]; While[k < Prime[n + 1], k += m]; k]; Array[f, 58] (* Robert G. Wilson v, Apr 27 2006 *)

Formula

a(n) - A118336(n) = 2 *(prime(n+1) - prime(n)).
a(n) - A113709(n) = prime(n+1) - prime(n), for n>= 2.

Extensions

More terms from Robert G. Wilson v, Apr 27 2006

A118336 a(n) = greatest multiple of (p(n+1) - p(n)) which is < p(n), where p(m) is the m-th prime.

Original entry on oeis.org

1, 2, 4, 4, 10, 12, 16, 16, 18, 28, 30, 36, 40, 40, 42, 48, 58, 60, 64, 70, 72, 76, 78, 88, 96, 100, 100, 106, 108, 112, 124, 126, 136, 130, 148, 150, 156, 160, 162, 168, 178, 180, 190, 192, 196, 192, 204, 220, 226, 228, 228, 238, 240, 246, 252, 258, 268, 270, 276
Offset: 1

Views

Author

Leroy Quet, Apr 25 2006

Keywords

Comments

A118335(n) - a(n) = 2*(p(n+1) - p(n)). A113709(n) - a(n) = p(n+1) - p(n), for n >= 2.

Crossrefs

Programs

  • Maple
    a:=n->(ithprime(n+1)-ithprime(n))*floor(ithprime(n)/(ithprime(n+1)-ithprime(n))): 1,seq(a(n),n=2..64); # Emeric Deutsch, Apr 27 2006
  • Mathematica
    Join[{1},Floor[First[#]/(Last[#]-First[#])](Last[#]-First[#])&/@Partition[Prime[ Range[ 2,60]],2,1]] (* Harvey P. Dale, Feb 25 2013 *)

Formula

a(1)=1; a(n) = (p(n+1) - p(n))*floor(p(n)/(p(n+1)-p(n))) for n >= 2. - Emeric Deutsch, Apr 27 2006

Extensions

More terms from Emeric Deutsch, Apr 27 2006

A140785 a(n) = the single integer k, where p(n) <= k <= p(n+1), that is divisible by (p(n+1)-p(n)+1), where p(n) is the n-th prime.

Original entry on oeis.org

2, 3, 6, 10, 12, 15, 18, 20, 28, 30, 35, 40, 42, 45, 49, 56, 60, 63, 70, 72, 77, 80, 84, 90, 100, 102, 105, 108, 110, 120, 130, 133, 138, 143, 150, 154, 161, 165, 168, 175, 180, 187, 192, 195, 198, 208, 221, 225, 228, 230, 238, 240, 242, 252, 259, 266, 270, 273
Offset: 1

Views

Author

Leroy Quet, Jul 13 2008

Keywords

Crossrefs

Programs

  • Mathematica
    (#[[2]]-#[[1]]+1)Floor[#[[2]]/(#[[2]]-#[[1]]+1)]&/@Partition[ Prime[ Range[ 60]],2,1] (* Harvey P. Dale, Apr 07 2018 *)

Formula

a(n) = (p(n+1)-p(n)+1) * floor(p(n+1)/(p(n+1)-p(n)+1)), where p(n) is the n-th prime.

Extensions

More terms from Diana L. Mecum, Jul 21 2008

A191612 Image of A008578 (the noncomposite numbers) under the "forming" transformation.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 12, 16, 18, 20, 24, 30, 36, 40, 42, 44, 48, 54, 60, 66, 68, 72, 78, 80, 84, 96, 100, 102, 104, 108, 112, 126, 128, 132, 138, 140, 150, 156, 162, 164, 168, 174, 180, 190, 192, 196, 198, 204, 216, 224, 228
Offset: 1

Views

Author

Jaroslav Krizek, Oct 16 2011

Keywords

Comments

We define a transformation T_f [b(n)] = [c(n)] - the index f means "forming" - of an increasing sequence b(n) of integers b(1), b(2), b(3), ..., b(k) which produces an increasing sequence c(n) of the same length, c(1), c(2), c(3), ..., c(k) such that c(1) = b(1), and for j>1, c(j) is the only integer b(j-1) < c(j) <= b(j), with (b(j)-b(j-1)) | c(j). We say b(n) is forming c(n).
An increasing sequence c(n) is called formed from the increasing sequence b(n) by T_f [b(n)] when there is an increasing sequence b(n) such that b(1) = c(1), for j > 1, b(j) is an integer c(j) <= b(j) < c(j+1) such that difference b(j) - b(j-1) divides c(j).
This transformation T_invf [c(n)] is an inverse of T_f [b(n)], but this inversion of c(n) back to b(n) may not be unique, and there are also increasing sequences c(n) which do not have an image T_invf [c(n)]. We call the latter sequences c(n) "unformed."
Each increasing sequences b(n) can be transform by transformation T_f [b(n)] but this does not apply to transformation T_invf [b(n)]. An increasing sequence c(n) is called totally formed if c(n) = T_f [c(n)] = T_invf [c(n)]. Each totally formed sequence is formed.
There are infinitely many formed, totally formed and unformed increasing sequences.
Examples of totally formed sequences: A047229, A004277, A002808, A000079, A000027.
Examples of formed, but not totally formed, sequences: A000225, A000295, A018252.
Examples of unformed sequences: A000040, A008578, A005117, A005408.

Examples

			a(10) = 20 because 20 is the only integer such that 19 = A008578(9) < 20 <= A008578(10) = 23 and simultaneously is multiple of difference A008578(10) - A008578(9) = 4.
		

Programs

  • Maple
    Tf := proc(L)
            local a,j,c ;
            a := [op(1,L)] ;
            while nops(a) < nops(L)-1 do
                    j := nops(a)+1 ;
                    for c from op(j-1,L)+1 to op(j,L) do
                            if (c mod ( op(j,L)-op(j-1,L) )) = 0 then
                                    a := [op(a),c] ;
                                    break;
                            end if;
                    end do:
            end do:
            a ;
    end proc:
    nonc := [seq(A008578(n),n=1..80)] ;
    Tf(nonc) ; # R. J. Mathar, Oct 27 2011

Formula

For n > 3, a(n) = A113709(n-2).
Showing 1-9 of 9 results.