A258482 Positive numbers n with concatenations n=x//y such that n=x^2-y^2.
100, 147, 10000, 13467, 1000000, 1010100, 1016127, 1034187, 1140399, 1190475, 1216512, 1300624, 1334667, 1416767, 1484847, 1530900, 100000000, 102341547, 102661652, 116604399, 133346667, 159809775, 10000000000, 10101010100, 13333466667, 14848484847
Offset: 1
Examples
147 is a member, since 147 = 14^2 - 7^2. 1484847 is a member, since 1484847 = 1484^2- 847^2. 48 is a member of A113797 since 48 = |4^2 - 8^2|, but 48 is not equal to 4^2 - 8^2, so 48 is not a member of this sequence.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..4397 (terms < 10^60)
Programs
-
PARI
isok(n) = {d = digits(n); if (#d > 1, for (k=1, #d-1, vba = Vecrev(vector(k, i, d[i])); vbb = Vecrev(vector(#d-k, i, d[k+i])); da = sum(i=1, #vba, vba[i]*10^(i-1)); db = sum(i=1, #vbb, vbb[i]*10^(i-1)); if (da^2 - db^2 == n, return(1));););} \\ Michel Marcus, Jun 14 2015
-
Python
for p in range(1, 7): for i in range(10**p, 10**(p + 1)): c = 10**(int((p - 1) / 2) + 1) a, b = i // c, i % c if i == a**2 - b**2: print(i, end=",")
Formula
n=x*10^d+y, where 10^(d-1)<=x<10^d and 0<=y<10^d and n=x^2-y^2.
Extensions
More terms from Giovanni Resta, Jun 14 2015
Comments