A151891 a(n) = Pi(A113824(n+1)).
2, 4, 9, 36, 6561, 252252704150178, 1650016588712720468
Offset: 1
Links
Extensions
a(6)-a(7) using Kim Walisch's primecount, from Amiram Eldar, Mar 13 2020
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a[1] = 0; a[n_] := a[n] = Block[{k = a[n - 1] + 1, s = Plus @@ (2^Array[a, n - 1])}, While[ !PrimeQ[s + 2^k], k++ ]; k]; Array[a, 12] (* Robert G. Wilson v *)
from sympy import isprime def afind(limit): print("0, 1", end=", ") s, pow2 = 2**0 + 2**1, 2**2 for m in range(2, limit+1): if isprime(s+pow2): print(m, end=", "); s += pow2 pow2 *= 2 afind(2000) # Michael S. Branicky, Jul 11 2021
a(1) = 1 by definition. a(2) = 2*1 + 3^1 = 5. a(3) = 2*5 + 3^1 = 13. a(4) = 2*13 + 3^1 = 29. a(5) = 2*29 + 3^1 = 61. a(6) = 2*61 + 3^2 = 271. a(7) = 2*271 + 3^2 = 569. a(32) = 2*6553461379 + 3^49 = 239299329230630636512841. Here 49 is a record value for the exponent.
a(1) = 1 by definition. a(2) = 2*1 + 5^1 = 7. a(3) = 2*7 + 5^1 = 19. a(4) = 2*19 + 5^1 = 43. a(5) = 2*43 + 5^3 = 211. a(6) = 2*211 + 5^3 = 547. a(7) = 2*547 + 5^5 = 4219. a(13) = 2*142963 + 5^13 = 1220989051. a(20) = 2*305299094471179 + 5^31 = 4656613483675581520483, where 31 is a record exponent. a(22) = 2*9313226967351163119091 + 5^45 = 28421709449030461369547296941307 and 45 is the new record exponent.
Comments