Original entry on oeis.org
1, 2, 3, 5, 8, 17, 54, 67, 208, 1753, 5042, 6311
Offset: 1
A259630
a(n) is the smallest integer not occurring earlier such that 2^a(1) + 2^a(2) + ... + 2^a(n) is a prime.
Original entry on oeis.org
1, 0, 2, 4, 3, 12, 5, 14, 27, 8, 25, 30, 31, 36, 13, 18, 131, 60, 133, 458, 247, 1040, 21, 618, 283, 300, 209, 6282, 19107, 11792, 3401, 30214, 1211, 3044, 15989, 30194
Offset: 1
a(1) = 1 since 2^0 = 1 is not prime, but 2^1 = 2 is prime.
a(2) = 0 since 2^1 + 2^0 = 2 + 1 = 3 is prime.
a(3) = 2 since 2^1 + 2^0 + 2^2 = 2 + 1 + 4 = 7 is prime.
-
findsm(va, n) = {m = 0; ok = 0; vs = vecsort(va); sa = sum(k=1, #va, 2^va[k]); while (!ok, if (! vecsearch(vs, m), ns = sa + 2^m; if (isprime(ns), ok = 1; break);); m++;); m;}
lista(nn) = {va = []; for (n=1, nn, m = findsm(va, n); va = concat(va, m); print1(m, ", "););} \\ Michel Marcus, Sep 26 2015
-
from sympy import isprime
A259630_list, A259630_set, k = [], set(), 0
while len(A259630_list) < 50:
n, m = 0,1
k += m
while n in A259630_set or not isprime(k):
n += 1
k += m
m *= 2
A259630_list.append(n)
A259630_set.add(n) # Chai Wah Wu, Jun 27 2019
a(26)-a(28) from
Joerg Arndt (with ispseudoprime() in Pari), Sep 28 2015
A321084
Primes prime(n) such that 1 + Sum_{k=1..n} 2^(prime(k)-1) is prime.
Original entry on oeis.org
2, 3, 5, 19, 2039, 2879
Offset: 1
a(3) = 5 since 1 + 2^(2-1) + 2^(3-1) + 2^(5-1) = 10111_2 = 23 is prime.
Note that prime(3) = 5 and A080355(3+1) = 23 prime.
-
Prime@ Select[Range[10^3], PrimeQ[1 + Total@ Array[2^(Prime[#] - 1) &, #]] &] (* Michael De Vlieger, Oct 31 2018 *)
-
isok(p) = isprime(p) && isprime(1 + sum(k=1, primepi(p), 2^(prime(k)-1))); \\ Michel Marcus, Oct 27 2018
Showing 1-3 of 3 results.
Comments