A113849 Numbers whose prime factors are raised to the fourth power.
16, 81, 625, 1296, 2401, 10000, 14641, 28561, 38416, 50625, 83521, 130321, 194481, 234256, 279841, 456976, 707281, 810000, 923521, 1185921, 1336336, 1500625, 1874161, 2085136, 2313441, 2825761, 3111696, 3418801, 4477456, 4879681, 6765201, 7890481
Offset: 1
Examples
1296 = 16*81 = 2^4*3^4 so the prime factors of 1296, 2 and 3, are raised to the fourth power.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Select[ Range@50^4, Union[Last /@ FactorInteger@# ] == {4} &] (* Robert G. Wilson v, Jan 26 2006 *) nn = 50; t = Select[Range[2, nn], Union[Transpose[FactorInteger[#]][[2]]] == {1} &]; t^4 (* T. D. Noe, Mar 13 2013 *) Rest[Select[Range[100], SquareFreeQ]^4] (* Vaclav Kotesovec, May 22 2020 *)
-
PARI
allpwrfact(n,p) = { local(x,j,ln,y,flag); for(x=4,n, y=Vec(factor(x)); ln = length(y[1]); flag=0; for(j=1,ln, if(y[2][j]==p,flag++); ); if(flag==ln,print1(x",")); ) } \\ All prime factors are raised to the power p
-
Python
from math import isqrt from sympy import mobius def A113849(n): def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)) kmin, kmax = 1,2 while f(kmax) >= kmax: kmax <<= 1 while True: kmid = kmax+kmin>>1 if f(kmid) < kmid: kmax = kmid else: kmin = kmid if kmax-kmin <= 1: break return kmax**4 # Chai Wah Wu, Aug 19 2024
Formula
From Peter Munn, Oct 31 2019: (Start)
a(n) = A005117(n+1)^4.
{a(n)} = {A225546(A000351(n)) : n >= 0} \ {1}, where {a(n)} denotes the set of integers in the sequence.
(End)
Sum_{k>=1} 1/a(k) = zeta(4)/zeta(8) - 1 = 105/Pi^4 - 1. - Amiram Eldar, May 22 2020
Extensions
More terms from Robert G. Wilson v, Jan 26 2006
Comments