A113869
Coefficients in asymptotic expansion of probability that a random pair of elements from the alternating group A_k generates all of A_k.
Original entry on oeis.org
1, -1, -1, -4, -23, -171, -1542, -16241, -194973, -2622610, -39027573, -636225591, -11272598680, -215668335091, -4431191311809, -97316894892644, -2275184746472827, -56421527472282127, -1479397224086870294, -40897073524132164189, -1188896226524012279617
Offset: 0
- Vaclav Kotesovec, Table of n, a(n) for n = 0..420
- L. Babai, The probability of generating the symmetric group, J. Combin. Theory, A52 (1989), 148-153.
- J. Bovey and A. Williamson, The probability of generating the symmetric group, Bull. London Math. Soc. 10 (1978) 91-96.
- J. D. Dixon, The probability of generating the symmetric group, Math. Z. 110 (1969) 199-205.
- J. D. Dixon, Asymptotics of Generating the Symmetric and Alternating Groups, Electronic Journal of Combinatorics, vol 11(2), R56.
- Thibault Godin, An analogue to Dixon's theorem for automaton groups, arXiv preprint arXiv:1610.03301 [math.GR], 2016.
- Richard J. Martin, and Michael J. Kearney, Integral representation of certain combinatorial recurrences, Combinatorica: 35:3 (2015), 309-315.
-
A003319[n_] := A003319[n] = n! - Sum[ k!*A003319[n-k], {k, 1, n-1}]; a[n_] := -Sum[ A003319[i]*StirlingS2[n-1, i-1], {i, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Dec 11 2012, after N. J. A. Sloane *)
A114038
Analog of A113869 for three generators.
Original entry on oeis.org
1, 0, -1, 0, -3, -6, -38, -186, -1181, -8094, -61865, -516702, -4688020, -45887352, -481954769, -5406249972, -64506680939, -815807306442, -10901200843386, -153475188129114, -2270769144678657, -35226976789341426, -571781884343282417, -9691701188493783546
Offset: 0
-
nmax=30; A113871 = Rest[CoefficientList[Series[1/Sum[(k!)^2 x^k,{k,0,nmax}],{x,0,nmax}],x]]; Table[SeriesCoefficient[1 + Sum[A113871[[j]]/Product[n-i+1,{i,1,j}]^2,{j,1,nmax}],{n,Infinity,k}],{k,0,nmax}] (* Vaclav Kotesovec, Jul 28 2015 *)
A316862
Expansion of 1/(Sum_{k>=0} (k!)^3 x^k).
Original entry on oeis.org
1, -1, -7, -201, -13351, -1697705, -369575303, -127249900617, -65286578868455, -47651775381867241, -47688241963081263175, -63505249400026210723209, -109775495351620406817045415, -241236985075124408660287423529, -662075390371447206867029299628807
Offset: 0
1/(Sum_{k>=0} (k!)^b x^k):
A167894 (b=1),
A113871 (b=2), this sequence (b=3).
-
a[n_] := -Sum[(k!)^3*a[n - k], {k, n}]; a[0] = 1; Array[a, 15, 0] (* Robert G. Wilson v, Jul 15 2018 *)
nmax = 20; CoefficientList[Series[1/Sum[k!^3 * x^k, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 08 2020 *)
A306629
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of 1/(Sum_{j>=0} (j!)^k * x^j).
Original entry on oeis.org
1, 1, -1, 1, -1, 0, 1, -1, -1, 0, 1, -1, -3, -3, 0, 1, -1, -7, -29, -13, 0, 1, -1, -15, -201, -499, -71, 0, 1, -1, -31, -1265, -13351, -13101, -461, 0, 1, -1, -63, -7713, -328975, -1697705, -486131, -3447, 0, 1, -1, -127, -46529, -7946143, -206659569, -369575303, -24266797, -29093, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, ...
-1, -1, -1, -1, -1, ...
0, -1, -3, -7, -15, ...
0, -3, -29, -201, -1265, ...
0, -13, -499, -13351, -328975, ...
0, -71, -13101, -1697705, -206659569, ...
0, -461, -486131, -369575303, -268312660751, ...
A114039
Expansion of g.f. 1/Sum_{k>=0} k!*(k!+1)*x^k/2.
Original entry on oeis.org
1, -1, -2, -16, -257, -6613, -243980, -12155224, -786429623, -64166829085, -6449457120962, -783277824629140, -113105715390915929, -19155829563735891169, -3760880464339217383124, -847344181950467763488740, -217159542960607254804746279, -62816327344923649504400271697
Offset: 0
-
nmax=17; CoefficientList[Series[1/Sum[k!*(k!+1)*x^k/2,{k,0,nmax}],{x,0,nmax}],x] (* Stefano Spezia, Oct 09 2023 *)
Showing 1-5 of 5 results.