A113897 Triangle read by rows: number of simsun n-permutations with k descents.
1, 1, 1, 1, 4, 1, 11, 4, 1, 26, 34, 1, 57, 180, 34, 1, 120, 768, 496, 1, 247, 2904, 4288, 496, 1, 502, 10194, 28768, 11056, 1, 1013, 34096, 166042, 141584, 11056, 1, 2036, 110392, 868744, 1372088, 349504, 1, 4083, 349500, 4247720, 11204160, 6213288, 349504
Offset: 1
Examples
Triangle begins 1; 1, 1; 1, 4; 1, 11, 4; 1, 26, 34; 1, 57, 180, 34; ...
Links
- Chak-On Chow and Wai Chee Shiu, Counting Simsun Permutations by Descents, Ann. Comb. 15, 625-635 (2011). See p. 627.
- Ming-Jian Ding and Bao-Xuan Zhu, Some results related to Hurwitz stability of combinatorial polynomials, Advances in Applied Mathematics, Volume 152, (2024), 102591. See p. 35.
- R. P. Stanley, Flag f-vectors and the cd-index, Math. Zeitschrift 216 (1994), 483-499.
- S. Sundaram, Plethysm, Partitions with an Even Number of Blocks and Euler Numbers, in "Formal Power Series and Algebraic Combinatorics 1994," DIMACS Series in Discrete Mathematics and Theoretical Computer Science 24, AMS (1996).
Programs
-
Mathematica
Table[SeriesCoefficient[(2t-1)*(Sec[x*Sqrt[2t-1]/2]/(Sqrt[2t-1]- Tan[x*Sqrt[2t-1]/2]))^2,{x,0,n},{t,0,k}]n!,{n,11},{k,0,Floor[n/2]}]//Flatten (* Stefano Spezia, Aug 09 2023 *)
Formula
T(n, k) = (k+1)*T(n-1, k) + (n-2k+1)*T(n-1, k-1);
Row g.f.: T(n, t) = Sum_{k=0..floor(n/2)} T(n, k)*t^k,
T(n, t) = ((n-1)*t + 1)*T(n-1, t) + t*(1-2t)*T(n-1, t)'.
E.g.f.: Sum_{n>=1} T(n, t)*x^n/n! = (2t-1)*(sec(x*sqrt(2t-1)/2)/(sqrt(2t-1) - tan(x*sqrt(2t-1)/2)))^2.
Extensions
Corrected and extended by Vladeta Jovovic, Jan 30 2006
Comments