cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113897 Triangle read by rows: number of simsun n-permutations with k descents.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 11, 4, 1, 26, 34, 1, 57, 180, 34, 1, 120, 768, 496, 1, 247, 2904, 4288, 496, 1, 502, 10194, 28768, 11056, 1, 1013, 34096, 166042, 141584, 11056, 1, 2036, 110392, 868744, 1372088, 349504, 1, 4083, 349500, 4247720, 11204160, 6213288, 349504
Offset: 1

Views

Author

Chak-On Chow (cchow(AT)alum.mit.edu), Jan 28 2006

Keywords

Comments

Is this A094503 after removal of the top row? - R. J. Mathar, Aug 13 2008
Yes. See formula of Peter Bala, Jun 26 2012 in A094503. - Stefano Spezia, Aug 09 2023

Examples

			Triangle begins
   1;
   1,   1;
   1,   4;
   1,  11,   4;
   1,  26,  34;
   1,  57, 180,  34;
   ...
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[(2t-1)*(Sec[x*Sqrt[2t-1]/2]/(Sqrt[2t-1]- Tan[x*Sqrt[2t-1]/2]))^2,{x,0,n},{t,0,k}]n!,{n,11},{k,0,Floor[n/2]}]//Flatten (* Stefano Spezia, Aug 09 2023 *)

Formula

T(n, k) = (k+1)*T(n-1, k) + (n-2k+1)*T(n-1, k-1);
Row g.f.: T(n, t) = Sum_{k=0..floor(n/2)} T(n, k)*t^k,
T(n, t) = ((n-1)*t + 1)*T(n-1, t) + t*(1-2t)*T(n-1, t)'.
E.g.f.: Sum_{n>=1} T(n, t)*x^n/n! = (2t-1)*(sec(x*sqrt(2t-1)/2)/(sqrt(2t-1) - tan(x*sqrt(2t-1)/2)))^2.

Extensions

Corrected and extended by Vladeta Jovovic, Jan 30 2006