Original entry on oeis.org
1, 6, 255, 92263, 280864514
Offset: 1
A257952
Number of ways to quarter a 2n X 2n chessboard.
Original entry on oeis.org
1, 1, 5, 37, 766, 43318, 7695805, 4015896016, 6371333036059, 30153126159555641, 431453249608567040694, 18558756256964594960321428, 2411839397220672351872242339314, 945878376319424018440202856702995909, 1121914029089423867715407724741780046405923
Offset: 0
- M. Gardner, The Unexpected Hanging and Other Mathematical Diversions. Simon and Schuster, NY, 1969, p. 189.
- Popular Computing (Calabasas, CA), Vol. 1 (No. 7, 1973), Problem 15, front cover and page 2.
- T. R. Parkin, Letter to N. J. A. Sloane, Feb 01, 1974. This letter contained as an attachment the following 11-page letter to Fred Gruenberger.
- T. R. Parkin, Letter to Fred Gruenberger, Jan 29, 1974
- T. R. Parkin, Discussion of Problem 15, Popular Computing (Calabasas, CA), Vol. 2, Number 15 (June 1974), pages PC15-4 to PC15-8.
- Popular Computing (Calabasas, CA), Illustration showing that a(3) = 37, Vol. 1 (No. 7, 1973), front cover. (One of the 37 is simply the square divided into four quadrants.)
- Giovanni Resta, Illustration of a(4) = 766.
A064941
Quartering a 2n X 2n chessboard (reference A257952) considering only the 90-deg rotationally symmetric results (omitting results with only 180-deg symmetry).
Original entry on oeis.org
1, 3, 26, 596, 38171, 7083827, 3852835452, 6200587517574, 29752897658253125, 427721252609771505989, 18479976131829456895423324, 2405174963192312814001570260392, 944597040906414962273553855513194341, 1120924326970482645724785944664901286951323
Offset: 1
Walter Gilbert (Walter(AT)Gilbert.net), Oct 28 2001
A068416
Number of partitionings of n X n checkerboard into two edgewise-connected sets.
Original entry on oeis.org
0, 6, 53, 627, 16213, 1123743, 221984391, 127561384993, 215767063451331, 1082828220389781579, 16209089366362071416785, 726438398002211876667379681, 97741115155002465272674416929195, 39565596445488219947994403962984729307
Offset: 1
Illustration of a(2)=6:
11 12 12 12 11 11
22 12 22 11 12 21
Illustration of a few solutions of a(3):
111 112 122 111 111
121 111 112 212 111
111 111 222 222 222
- Anthony J. Guttmann and Iwan Jensen, Table of n, a(n) for n = 1..26
- Benjamin Fifield, Kosuke Imai, Jun Kawahara, and Christopher T. Kenny, The Essential Role of Empirical Validation in Legislative Redistricting Simulation, Tech. rep., Department of Government and Department of Statistics, Harvard University (2019).
- Anthony J. Guttmann and Iwan Jensen, The gerrymander sequence, or A348456, arXiv:2211.14482 [math.CO], 2022.
- Eric Weisstein's World of Mathematics, Grid Graph.
- Eric Weisstein's World of Mathematics, Minimal Edge Cut.
A271741
Number of ways to dissect a hexagon with side length n exactly into two identical parts in a triangular lattice.
Original entry on oeis.org
1, 8, 731, 982648, 16305532683, 3722056510716702, 11931439930135002524767
Offset: 1
- G. P. Jelliss, Dissected Hexagons, The Games and Puzzles Journal, Issue 22, January-April 2002.
A271857
Number of ways to dissect a hexagon with side length n exactly into six identical parts in a triangular lattice.
Original entry on oeis.org
1, 2, 12, 173, 5429, 392544, 66961869, 27094069322, 26124568587557, 60352331499840380, 335377713005955826349, 4494480789037552980419332, 145516206571394421594063628243, 11398373584242623552596178870957640, 2162546126021822830176241418936795142991
Offset: 1
- G. P. Jelliss, Dissected Hexagons, The Games and Puzzles Journal, Issue 22, January-April 2002.
A003155
Number of ways to halve an n X n chessboard.
Original entry on oeis.org
1, 1, 1, 6, 15, 255, 1897, 92263, 1972653, 281035054, 17635484470, 7490694495750, 1405083604458437, 1789509008288411290
Offset: 1
- M. Gardner, The Unexpected Hanging and Other Mathematical Diversions. Simon and Schuster, NY, 1969, p. 189.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A271858
Number of ways to trisect a triangle with side length n exactly into three identical parts in a triangular lattice.
Original entry on oeis.org
0, 1, 1, 2, 5, 20, 56, 276, 2136, 13756, 148352, 2727448, 41044816, 1056334024, 46033137324
Offset: 1
- G. P. Jelliss, Trisected Triangles, The Games and Puzzles Journal, Issue 22, January-April 2002.
Showing 1-8 of 8 results.
Comments