A113901 Product of omega(n) and bigomega(n) = A001221(n)*A001222(n), where omega(x): number of distinct prime divisors of x. bigomega(x): number of prime divisors of x, counted with multiplicity.
0, 1, 1, 2, 1, 4, 1, 3, 2, 4, 1, 6, 1, 4, 4, 4, 1, 6, 1, 6, 4, 4, 1, 8, 2, 4, 3, 6, 1, 9, 1, 5, 4, 4, 4, 8, 1, 4, 4, 8, 1, 9, 1, 6, 6, 4, 1, 10, 2, 6, 4, 6, 1, 8, 4, 8, 4, 4, 1, 12, 1, 4, 6, 6, 4, 9, 1, 6, 4, 9, 1, 10, 1, 4, 6, 6, 4, 9, 1, 10, 4, 4, 1, 12, 4, 4, 4, 8, 1, 12, 4, 6, 4, 4, 4, 12, 1, 6, 6, 8, 1, 9
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
Table[PrimeNu[n]*PrimeOmega[n], {n,1,50}] (* G. C. Greubel, Apr 23 2017 *)
-
PARI
a(n) = omega(n)*bigomega(n);
Formula
a(n) = 1 iff n is prime.
A068993(a(n)) = 4. - Reinhard Zumkeller, Mar 13 2011
Comments