A114089 Total number of parts in the tails below the Durfee squares of all partitions of n.
0, 1, 3, 6, 11, 19, 31, 50, 76, 116, 169, 247, 349, 494, 682, 941, 1274, 1724, 2296, 3054, 4014, 5263, 6833, 8854, 11373, 14578, 18556, 23561, 29736, 37447, 46903, 58619, 72925, 90518, 111899, 138044, 169665, 208111, 254436, 310456, 377687, 458625
Offset: 1
Keywords
Examples
a(4) = 6 because the bottom tails of the five partitions of 4, namely [4], [3,1], [2,2], [2,1,1] and [1,1,1,1], are { }, [1], { }, [1,1] and [1,1,1], respectively, having a total of 6 parts.
References
- G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976 (pp. 27-28).
- G. E. Andrews and K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004 (pp. 75-78).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Programs
-
Maple
g:=sum(z^(k^2)/product((1-z^j)*(1-t*z^j),j=1..k),k=1..10): dgdt1:=simplify(subs(t=1,diff(g,t))): dgdt1ser:=series(dgdt1,z=0,55): seq(coeff(dgdt1ser,z,n),n=1..45); # second Maple program: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i)))) end: a:= n-> add(j*b(n-j, j), j=1..n) -add(add(b(k, d)*b(n-d^2-k, d), k=0..n-d^2)*d, d=1..floor(sqrt(n))): seq(a(n), n=1..70); # Alois P. Heinz, Apr 09 2012
-
Mathematica
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]; a[n_] := Sum[j*b[n-j, j], {j, 1, n}] - Sum[Sum[b[k, d]*b[n-d^2-k, d], {k, 0, n-d^2}]*d, {d, 1, Floor[Sqrt[n]]}]; Table[a[n], {n, 1, 70}] (* Jean-François Alcover, Mar 31 2015, after Alois P. Heinz *)
Formula
a(n) = Sum_{k=0..n-1} k*A114088(n,k).
G.f.: [(d/dt){sum(q^(k^2)/product((1-q^j)(1-tq^j), j=1..k), k=1..infinity)}]_{t=1}.