cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114123 Riordan array (1/(1-x), x*(1+x)^2/(1-x)^2).

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 13, 9, 1, 1, 25, 41, 13, 1, 1, 41, 129, 85, 17, 1, 1, 61, 321, 377, 145, 21, 1, 1, 85, 681, 1289, 833, 221, 25, 1, 1, 113, 1289, 3653, 3649, 1561, 313, 29, 1, 1, 145, 2241, 8989, 13073, 8361, 2625, 421, 33, 1, 1, 181, 3649, 19825, 40081, 36365, 16641, 4089, 545, 37, 1
Offset: 0

Views

Author

Paul Barry, Feb 07 2006, Oct 22 2006

Keywords

Comments

Row sums are A099463(n+1). Diagonal sums are A116404.
Triangle formed of even-numbered columns of the Delannoy triangle A008288. - Philippe Deléham, Mar 11 2013

Examples

			Triangle begins
  1;
  1,  1;
  1,  5,   1;
  1, 13,   9,   1;
  1, 25,  41,  13,   1;
  1, 41, 129,  85,  17,  1;
  1, 61, 321, 377, 145, 21, 1;
		

Crossrefs

Cf. A008288, A099463 (row sums), A116404 (diagonal sums), A184883.

Programs

  • Magma
    T:= func< n, k | (&+[Binomial(2*k, j)*Binomial(n-k, j)*2^j: j in [0..n-k]]) >;
    [T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 20 2021
    
  • Maple
    T := (n,k) -> hypergeom([-2*k, k-n], [1], 2);
    seq(seq(round(evalf(T(n,k),99)),k=0..n),n=0..9); # Peter Luschny, Sep 16 2014
  • Mathematica
    T[n_, k_] := Hypergeometric2F1[-2k, k-n, 1, 2];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] (* Jean-François Alcover, Jun 13 2019 *)
  • Sage
    def A114123(n,k): return round( hypergeometric([-2*k, k-n], [1], 2) )
    flatten([[A114123(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Nov 20 2021

Formula

T(n, k) = Sum_{j=0..n} C(2*k,n-k-j)*C(n-k,j)*2^(n-k-j).
T(n, k) = Sum_{j=0..n-k} C(2*k,j)*C(n-k,j)*2^j.
Sum_{k=0..n} T(n, k) = A099463(n+1).
Sum_{k=0..floor(n/2)} T(n, k) = A116404(n).
T(n, k) = hypergeom([-2*k, k-n], [1], 2). - Peter Luschny, Sep 16 2014
T(n, n-k) = A184883(n, k). - G. C. Greubel, Nov 20 2021