A114146 Number of threshold functions on n X n grid.
1, 2, 14, 58, 174, 402, 838, 1498, 2566, 4082, 6214, 8986, 12790, 17490, 23646, 31114, 40150, 50914, 64174, 79450, 97870, 118914, 143110, 170506, 202502, 238082, 278702, 323866, 374510, 430274, 493382, 561834, 638694, 722658, 814606, 914362, 1023430, 1140466
Offset: 0
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..10000
- M. A. Alekseyev. On the number of two-dimensional threshold functions, arXiv:math/0602511 [math.CO], 2006-2010; doi:10.1137/090750184, SIAM J. Disc. Math. 24(4), 2010, pp. 1617-1631.
- M. A. Alekseyev, M. Basova, N. Yu. Zolotykh. On the minimal teaching sets of two-dimensional threshold functions. SIAM J. Disc. Math. 29(1), 2015, pp. 157-165.
- Jack Koplowitz, Michael Lindenbaum and A. Bruckstein, The number of digital straight lines on an N*N grid, IEEE Transactions on Information Theory 36.1 (1990): 192-197. See D(n).
- N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence)
Crossrefs
The following eight sequences are all essentially the same. The simplest is A115004(n), which we denote by z(n). Then A088658(n) = 4*z(n-1); A114043(n) = 2*z(n-1)+2*n^2-2*n+1; A114146(n) = 2*A114043(n); A115005(n) = z(n-1)+n*(n-1); A141255(n) = 2*z(n-1)+2*n*(n-1); A290131(n) = z(n-1)+(n-1)^2; A306302(n) = z(n)+n^2+2*n. - N. J. A. Sloane, Feb 04 2020
Programs
-
Mathematica
a[0] = 1; a[n_] := 4 Sum[(n-i)(n-j) Boole[CoprimeQ[i, j]], {i, 1, n-1}, {j, 1, n-1}] + 4 n^2 - 4 n + 2; Array[a, 38, 0] (* Jean-François Alcover, Sep 04 2018, after Max Alekseyev in A114043 *)
-
Python
from sympy import totient def A114146(n): return 1 if n == 0 else 8*n**2-12*n+6 + 4*sum(totient(i)*(n-i)*(2*n-i) for i in range(2,n)) # Chai Wah Wu, Aug 15 2021
Formula
For n>0, a(n) = 2*A114043(n).
For n>0, a(n) = 8*n^2 - 12*n + 6 + 4*Sum_{i=2..n-1} (n-i)*(2n-i)*phi(i). - Chai Wah Wu, Aug 15 2021
Extensions
Definition corrected by Max Alekseyev, Oct 23 2008
a(0)=1 prepended by Max Alekseyev, Jan 23 2015
Comments