A115027 Duplicate of A114146.
1, 2, 14, 58, 174, 402, 838, 1498, 2566, 4082, 6214, 8986, 12790, 17490
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
A115004 := proc(n) local a,b,r ; r := 0 ; for a from 1 to n do for b from 1 to n do if igcd(a,b) = 1 then r := r+(n+1-a)*(n+1-b); end if; end do: end do: r ; end proc: seq(A115004(n),n=1..30); # R. J. Mathar, Jul 20 2017
a[n_] := Sum[(n-i+1) (n-j+1) Boole[GCD[i, j] == 1], {i, n}, {j, n}]; Array[a, 40] (* Jean-François Alcover, Mar 23 2020 *)
a(n) = n^2 + sum(i=2, n, (n+1-i)*(2*n+2-i)*eulerphi(i)); \\ Michel Marcus, May 08 2024
from math import gcd def a115004(n): r=0 for a in range(1, n + 1): for b in range(1, n + 1): if gcd(a, b)==1: r+=(n + 1 - a)*(n + 1 - b) return r print([a115004(n) for n in range(1, 51)]) # Indranil Ghosh, Jul 21 2017
from sympy import totient def A115004(n): return n**2 + sum(totient(i)*(n+1-i)*(2*n+2-i) for i in range(2,n+1)) # Chai Wah Wu, Aug 15 2021
# Maple from N. J. A. Sloane, Mar 04 2020, starting at n=1: First define z(n) = A115004 z := proc(n) local a, b, r ; r := 0 ; for a from 1 to n do for b from 1 to n do if igcd(a, b) = 1 then r := r+(n+1-a)*(n+1-b); end if; end do: end do: r ; end proc: a := n-> z(n)+n^2+2*n; [seq(a(n), n=1..50)];
z[n_] := Sum[(n - i + 1)(n - j + 1) Boole[GCD[i, j] == 1], {i, n}, {j, n}]; a[0] = 0; a[n_] := z[n] + n^2 + 2n; a /@ Range[0, 40] (* Jean-François Alcover, Mar 24 2020 *)
from sympy import totient def A306302(n): return 2*n*(n+1) + sum(totient(i)*(n+1-i)*(2*n+2-i) for i in range(2,n+1)) # Chai Wah Wu, Aug 16 2021
A290131 := proc(n) A115004(n-1)+(n-1)^2 ; end proc: seq(A290131(n),n=1..30) ;
z[n_] := Sum[(n - i + 1)(n - j + 1) Boole[GCD[i, j] == 1], {i, n}, {j, n}]; a[n_] := z[n - 1] + (n - 1)^2; Array[a, 40] (* Jean-François Alcover, Mar 24 2020 *)
from math import gcd def a115004(n): r=0 for a in range(1, n + 1): for b in range(1, n + 1): if gcd(a, b)==1:r+=(n + 1 - a)*(n + 1 - b) return r def a(n): return a115004(n - 1) + (n - 1)**2 print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jul 20 2017, after Maple code
from sympy import totient def A290131(n): return 2*(n-1)**2 + sum(totient(i)*(n-i)*(2*n-i) for i in range(2,n)) # Chai Wah Wu, Aug 16 2021
Examples: the two sets are indicated by X's and o's. a(2) = 7: XX oX Xo XX XX oo oX XX XX XX Xo oX XX oX -------------------- a(3) = 29: XXX oXX ooX ooo ooX ooo XXX XXX XXX XXX oXX oXX XXX XXX XXX XXX XXX XXX -1- -4- -8- -4- -4- -8- Total = 29 -------------------- a(4)= 87: XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXo XXXo XXXo XXoo XXoo XXXX XXXo XXoo Xooo oooo XXoo Xooo oooo Xooo oooo --1- --4- --8- --8- --4- --4- --8- --8- --8- --8- XXXX XXXX XXXX XXXX XXXX XXXo XXXX XXXX XXXo XXXo XXoo Xooo oooo Xooo XXoo Xooo oooo oooo oooo oooo --4- --8- --2- --4- --8- Total = 87. --------------------
a[n_] := 2*Sum[(n - i)*(n - j)*Boole[CoprimeQ[i, j]], {i, 1, n - 1}, {j, 1, n - 1}] + 2*n^2 - 2*n + 1; Array[a, 40] (* Jean-François Alcover, Apr 25 2016, after Max Alekseyev *)
from sympy import totient def A114043(n): return 4*n**2-6*n+3 + 2*sum(totient(i)*(n-i)*(2*n-i) for i in range(2,n)) # Chai Wah Wu, Aug 15 2021
The 2 x 2 square lattice has a total of 6 line segments: 2 vertical, 2 horizontal and 2 diagonal.
Table[cnt=0; Do[If[GCD[c-a,d-b]<2, cnt++ ], {a,n}, {b,n}, {c,n}, {d,n}]; (cnt-n^2)/2, {n,20}] (* This recursive code is much more efficient. *) a[n_]:=a[n]=If[n<=1,0,2*a1[n]-a[n-1]+R1[n]] a1[n_]:=a1[n]=If[n<=1,0,2*a[n-1]-a1[n-1]+R2[n]] R1[n_]:=R1[n]=If[n<=1,0,R1[n-1]+4*EulerPhi[n-1]] R2[n_]:=(n-1)*EulerPhi[n-1] Table[a[n],{n,1,37}] (* Seppo Mustonen, May 13 2010 *) a[n_]:=2 Sum[(n-i) (n-j) Boole[CoprimeQ[i,j]], {i,1,n-1}, {j,1,n-1}] + 2 n^2 - 2 n; Array[a, 40] (* Vincenzo Librandi, Feb 05 2020 *)
from sympy import totient def A141255(n): return 2*(n-1)*(2*n-1) + 2*sum(totient(i)*(n-i)*(2*n-i) for i in range(2,n)) # Chai Wah Wu, Aug 16 2021
a[n_]:=2 Sum[(n-i) (n-j) Boole[CoprimeQ[i,j]], {i, 1, n-1}, {j, 1, n-1}] / 2 + n^2 - n; Array[a, 40] (* Vincenzo Librandi, Feb 05 2020 *)
from sympy import totient def A115005(n): return (n-1)*(2*n-1) + sum(totient(i)*(n-i)*(2*n-i) for i in range(2,n)) # Chai Wah Wu, Aug 15 2021
a(2)=4 because 4 (isosceles right) triangles with area 1/2 can be placed on a 2 X 2 grid.
z[n_] := Sum[(n - i + 1)(n - j + 1) Boole[GCD[i, j] == 1], {i, n}, {j, n}]; a[n_] := 4 z[n - 1]; Array[a, 40] (* Jean-François Alcover, Mar 24 2020 *)
from sympy import totient def A088658(n): return 4*(n-1)**2 + 4*sum(totient(i)*(n-i)*(2*n-i) for i in range(2,n)) # Chai Wah Wu, Aug 15 2021
VR := proc(m,n,q) local a,i,j; a:=0; for i from -m+1 to m-1 do for j from -n+1 to n-1 do if gcd(i,j)=q then a:=a+(m-abs(i))*(n-abs(j)); fi; od: od: a; end; [seq(VR(n,n,1),n=1..50)];
a[n_] := Sum[Boole[GCD[i, j] == 1] (n - Abs[i]) (n - Abs[j]), {i, -n + 1, n - 1}, {j, -n + 1, n - 1}]; Array[a, 36] (* Jean-François Alcover, Apr 19 2020 *)
from sympy import totient def A331771(n): return 4*((n-1)*(2*n-1)+sum(totient(i)*(n-i)*(2*n-i) for i in range(2,n))) # Chai Wah Wu, Aug 17 2021
I1 := proc(n) local a, i, j; a:=0; for i from 2 to n-1 do for j from 1 to i-1 do if igcd(i,j)=1 then a := a+(n-i)*(n-j); fi; od; od; a; end; [seq(I1(n),n=1..40)];
a(n) = sum(i=2, n-1, sum(j=1, i-1, if (gcd(i,j)==1, (n-i)*(n-j)))); \\ Michel Marcus, Mar 14 2020
from sympy import totient def A332612(n): return sum(totient(i)*(n-i)*(2*n-i) for i in range(2,n))//2 # Chai Wah Wu, Aug 17 2021
Comments