cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A115005 a(n) = (A114043(n) - 1)/2.

Original entry on oeis.org

0, 3, 14, 43, 100, 209, 374, 641, 1020, 1553, 2246, 3197, 4372, 5911, 7778, 10037, 12728, 16043, 19862, 24467, 29728, 35777, 42626, 50625, 59520, 69675, 80966, 93627, 107568, 123345, 140458, 159673, 180664, 203651, 228590, 255857, 285116, 317363, 352058
Offset: 1

Views

Author

N. J. A. Sloane, Feb 23 2006

Keywords

Crossrefs

The following eight sequences are all essentially the same. The simplest is A115004(n), which we denote by z(n). Then A088658(n) = 4*z(n-1); A114043(n) = 2*z(n-1)+2*n^2-2*n+1; A114146(n) = 2*A114043(n); A115005(n) = z(n-1)+n*(n-1); A141255(n) = 2*z(n-1)+2*n*(n-1); A290131(n) = z(n-1)+(n-1)^2; A306302(n) = z(n)+n^2+2*n. - N. J. A. Sloane, Feb 04 2020

Programs

  • Mathematica
    a[n_]:=2 Sum[(n-i) (n-j) Boole[CoprimeQ[i,j]], {i, 1, n-1}, {j, 1, n-1}] / 2 + n^2 - n; Array[a, 40] (* Vincenzo Librandi, Feb 05 2020 *)
  • Python
    from sympy import totient
    def A115005(n): return (n-1)*(2*n-1) + sum(totient(i)*(n-i)*(2*n-i) for i in range(2,n)) # Chai Wah Wu, Aug 15 2021

Formula

a(n) = (n-1)*(2n-1) + Sum_{i=2..n-1} (n-i)*(2n-i)*phi(i). - Chai Wah Wu, Aug 15 2021

Extensions

Offset corrected by Max Alekseyev, Apr 10 2019

A115004 a(n) = Sum_{i=1..n, j=1..n, gcd(i,j)=1} (n+1-i)*(n+1-j).

Original entry on oeis.org

1, 8, 31, 80, 179, 332, 585, 948, 1463, 2136, 3065, 4216, 5729, 7568, 9797, 12456, 15737, 19520, 24087, 29308, 35315, 42120, 50073, 58920, 69025, 80264, 92871, 106756, 122475, 139528, 158681, 179608, 202529, 227400, 254597, 283784, 315957, 350576, 387977
Offset: 1

Views

Author

N. J. A. Sloane, Feb 23 2006

Keywords

Comments

Also (1/4) * number of ways to select 3 distinct points forming a triangle of unsigned area = 1/2 from a square of grid points with side length n. Diagonal of triangle A320541. - Hugo Pfoertner, Oct 22 2018
From Chai Wah Wu, Aug 18 2021: (Start)
Theorem: a(n) = n^2 + Sum_{i=2..n} (n+1-i)*(2*n+2-i)*phi(i).
Proof: Since gcd(n,n) = 1 if and only if n = 1, Sum_{i=1..n, j=1..n, gcd(i,j)=1} (n+1-i)*(n+1-j) = n^2 + Sum_{i=1..n, j=1..n, gcd(i,j)=1, (i,j) <> (1,1)} (n+1-i)*(n+1-j)
= n^2 + Sum_{i=2..n, j=1..i, gcd(i,j)=1} (n+1-i)*(n+1-j) + Sum_{j=2..n, i=1..j, gcd(i,j)=1} (n+1-i)*(n+1-j) = n^2 + 2*Sum_{i=2..n, j=1..i, gcd(i,j)=1} (n+1-i)*(n+1-j), i.e., the diagonal is not double-counted.
This is equal to n^2 + 2*Sum_{i=2..n, j is a totative of i} (n+1-i)*(n+1-j). Since Sum_{j is a totative of i} 1 = phi(i) and for i > 1, Sum_{j is a totative of i} j = i*phi(i)/2, the conclusion follows.
Similar argument holds for corresponding formulas for A088658, A114043, A114146, A115005, etc.
(End)

Crossrefs

The following eight sequences are all essentially the same. The simplest is the present sequence, A115004(n), which we denote by z(n). Then A088658(n) = 4*z(n-1); A114043(n) = 2*z(n-1)+2*n^2-2*n+1; A114146(n) = 2*A114043(n); A115005(n) = z(n-1)+n*(n-1); A141255(n) = 2*z(n-1)+2*n*(n-1); A290131(n) = z(n-1)+(n-1)^2; A306302(n) = z(n)+n^2+2*n. - N. J. A. Sloane, Feb 04 2020
Main diagonal of array in A114999.

Programs

  • Maple
    A115004 := proc(n)
        local a,b,r ;
        r := 0 ;
        for a from 1 to n do
        for b from 1 to n do
            if igcd(a,b) = 1 then
                r := r+(n+1-a)*(n+1-b);
            end if;
        end do:
        end do:
        r ;
    end proc:
    seq(A115004(n),n=1..30); # R. J. Mathar, Jul 20 2017
  • Mathematica
    a[n_] := Sum[(n-i+1) (n-j+1) Boole[GCD[i, j] == 1], {i, n}, {j, n}];
    Array[a, 40] (* Jean-François Alcover, Mar 23 2020 *)
  • PARI
    a(n) = n^2 + sum(i=2, n, (n+1-i)*(2*n+2-i)*eulerphi(i)); \\ Michel Marcus, May 08 2024
  • Python
    from math import gcd
    def a115004(n):
        r=0
        for a in range(1, n + 1):
            for b in range(1, n + 1):
                if gcd(a, b)==1:
                    r+=(n + 1 - a)*(n + 1 - b)
        return r
    print([a115004(n) for n in range(1, 51)]) # Indranil Ghosh, Jul 21 2017
    
  • Python
    from sympy import totient
    def A115004(n): return n**2 + sum(totient(i)*(n+1-i)*(2*n+2-i) for i in range(2,n+1)) # Chai Wah Wu, Aug 15 2021
    

Formula

a(n) = Sum_{i=1..n, j=1..n, gcd(i,j)=1} (n+1-i)*(n+1-j).
As n -> oo, a(n) ~ (3/2)*n^4/Pi^2. This follows from Max Alekseyev's formula in A114043. - N. J. A. Sloane, Jul 03 2020
a(n) = n^2 + Sum_{i=2..n} (n+1-i)*(2n+2-i)*phi(i). - Chai Wah Wu, Aug 15 2021

A306302 Number of regions into which a figure made up of a row of n adjacent congruent rectangles is divided upon drawing diagonals of all possible rectangles (a(0)=0 by convention).

Original entry on oeis.org

0, 4, 16, 46, 104, 214, 380, 648, 1028, 1562, 2256, 3208, 4384, 5924, 7792, 10052, 12744, 16060, 19880, 24486, 29748, 35798, 42648, 50648, 59544, 69700, 80992, 93654, 107596, 123374, 140488, 159704, 180696, 203684, 228624, 255892, 285152, 317400, 352096, 389576
Offset: 0

Views

Author

Paarth Jain, Feb 05 2019

Keywords

Comments

Assuming that the rectangles have vertices at (k,0) and (k,1), k=0..n, the projective map (x,y) -> ((1-y)/(x+1),y/(x+1)) maps their partition to the partition of the right isosceles triangle described by Alekseyev et al. (2015), for which Theorem 13 gives the number of regions, line segments, and intersection points. - Max Alekseyev, Apr 10 2019
The figure is made up of A324042 triangles and A324043 quadrilaterals. - N. J. A. Sloane, Mar 03 2020

Crossrefs

See A331755 for the number of vertices, A331757 for the number of edges.
A column of A288187. See A288177 for additional references.
Also a column of A331452 and A356790.
The following eight sequences are all essentially the same. The simplest is A115004(n), which we denote by z(n). Then A088658(n) = 4*z(n-1); A114043(n) = 2*z(n-1)+2*n^2-2*n+1; A114146(n) = 2*A114043(n); A115005(n) = z(n-1)+n*(n-1); A141255(n) = 2*z(n-1)+2*n*(n-1); A290131(n) = z(n-1)+(n-1)^2; A306302(n) = z(n)+n^2+2*n. - N. J. A. Sloane, Feb 04 2020

Programs

  • Maple
    # Maple from N. J. A. Sloane, Mar 04 2020, starting at n=1:  First define z(n) = A115004
    z := proc(n)
        local a, b, r ;
        r := 0 ;
        for a from 1 to n do
        for b from 1 to n do
            if igcd(a, b) = 1 then
                r := r+(n+1-a)*(n+1-b);
            end if;
        end do:
        end do:
        r ;
    end proc:
    a := n-> z(n)+n^2+2*n;
    [seq(a(n), n=1..50)];
  • Mathematica
    z[n_] := Sum[(n - i + 1)(n - j + 1) Boole[GCD[i, j] == 1], {i, n}, {j, n}];
    a[0] = 0;
    a[n_] := z[n] + n^2 + 2n;
    a /@ Range[0, 40] (* Jean-François Alcover, Mar 24 2020 *)
  • Python
    from sympy import totient
    def A306302(n): return 2*n*(n+1) + sum(totient(i)*(n+1-i)*(2*n+2-i) for i in range(2,n+1)) # Chai Wah Wu, Aug 16 2021

Formula

a(n) = n + (A114043(n+1) - 1)/2, conjectured by N. J. A. Sloane, Feb 07 2019; proved by Max Alekseyev, Apr 10 2019
a(n) = n + A115005(n+1) = n + A141255(n+1)/2. - Max Alekseyev, Apr 10 2019
a(n) = A324042(n) + A324043(n). - Jinyuan Wang, Mar 19 2020
a(n) = Sum_{i=1..n, j=1..n, gcd(i,j)=1} (n+1-i)*(n+1-j) + n^2 + 2*n. - N. J. A. Sloane, Apr 11 2020
a(n) = 2n(n+1) + Sum_{i=2..n} (n+1-i)*(2n+2-i)*phi(i). - Chai Wah Wu, Aug 16 2021

Extensions

a(6)-a(20) from Robert Israel, Feb 07 2019
Edited and more terms added by Max Alekseyev, Apr 10 2019
a(0) added by N. J. A. Sloane, Feb 04 2020

A290131 Number of regions in a regular drawing of the complete bipartite graph K_{n,n}.

Original entry on oeis.org

0, 2, 12, 40, 96, 204, 368, 634, 1012, 1544, 2236, 3186, 4360, 5898, 7764, 10022, 12712, 16026, 19844, 24448, 29708, 35756, 42604, 50602, 59496, 69650, 80940, 93600, 107540, 123316, 140428, 159642, 180632, 203618, 228556, 255822, 285080, 317326, 352020, 389498
Offset: 1

Views

Author

R. J. Mathar, Jul 20 2017

Keywords

Crossrefs

For K_n see A007569, A007678, A135563.
The following eight sequences are all essentially the same. The simplest is A115004(n), which we denote by z(n). Then A088658(n) = 4*z(n-1); A114043(n) = 2*z(n-1)+2*n^2-2*n+1; A114146(n) = 2*A114043(n); A115005(n) = z(n-1)+n*(n-1); A141255(n) = 2*z(n-1)+2*n*(n-1); A290131(n) = z(n-1)+(n-1)^2; A306302(n) = z(n)+n^2+2*n. - N. J. A. Sloane, Feb 04 2020

Programs

  • Maple
    A290131 := proc(n)
        A115004(n-1)+(n-1)^2 ;
    end proc:
    seq(A290131(n),n=1..30) ;
  • Mathematica
    z[n_] := Sum[(n - i + 1)(n - j + 1) Boole[GCD[i, j] == 1], {i, n}, {j, n}];
    a[n_] := z[n - 1] + (n - 1)^2;
    Array[a, 40] (* Jean-François Alcover, Mar 24 2020 *)
  • Python
    from math import gcd
    def a115004(n):
        r=0
        for a in range(1, n + 1):
            for b in range(1, n + 1):
                if gcd(a, b)==1:r+=(n + 1 - a)*(n + 1 - b)
        return r
    def a(n): return a115004(n - 1) + (n - 1)**2
    print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jul 20 2017, after Maple code
    
  • Python
    from sympy import totient
    def A290131(n): return 2*(n-1)**2 + sum(totient(i)*(n-i)*(2*n-i) for i in range(2,n)) # Chai Wah Wu, Aug 16 2021

Formula

a(n) = A115004(n-1) + (n-1)^2.
a(n) = 2*(n-1)^2 + Sum_{i=2..n-1} (n-i)*(2n-i)*phi(i). - Chai Wah Wu, Aug 16 2021

A141255 Total number of line segments between points visible to each other in a square n X n lattice.

Original entry on oeis.org

0, 6, 28, 86, 200, 418, 748, 1282, 2040, 3106, 4492, 6394, 8744, 11822, 15556, 20074, 25456, 32086, 39724, 48934, 59456, 71554, 85252, 101250, 119040, 139350, 161932, 187254, 215136, 246690, 280916, 319346, 361328, 407302, 457180, 511714, 570232
Offset: 1

Views

Author

T. D. Noe, Jun 17 2008

Keywords

Comments

A line segment joins points (a,b) and (c,d) if the points are distinct and gcd(c-a,d-b)=1.

Examples

			The 2 x 2 square lattice has a total of 6 line segments: 2 vertical, 2 horizontal and 2 diagonal.
		

References

  • D. M. Acketa, J. D. Zunic: On the number of linear partitions of the (m,n)-grid. Inform. Process. Lett., 38 (3) (1991), 163-168. See Table A.1.
  • Jovisa Zunic, Note on the number of two-dimensional threshold functions, SIAM J. Discrete Math. Vol. 25 (2011), No. 3, pp. 1266-1268. See Eq. (1.2).

Crossrefs

Cf. A141224.
The following eight sequences are all essentially the same. The simplest is A115004(n), which we denote by z(n). Then A088658(n) = 4*z(n-1); A114043(n) = 2*z(n-1)+2*n^2-2*n+1; A114146(n) = 2*A114043(n); A115005(n) = z(n-1)+n*(n-1); A141255(n) = 2*z(n-1)+2*n*(n-1); A290131(n) = z(n-1)+(n-1)^2; A306302(n) = z(n)+n^2+2*n. - N. J. A. Sloane, Feb 04 2020

Programs

  • Mathematica
    Table[cnt=0; Do[If[GCD[c-a,d-b]<2, cnt++ ], {a,n}, {b,n}, {c,n}, {d,n}]; (cnt-n^2)/2, {n,20}]
    (* This recursive code is much more efficient. *)
    a[n_]:=a[n]=If[n<=1,0,2*a1[n]-a[n-1]+R1[n]]
    a1[n_]:=a1[n]=If[n<=1,0,2*a[n-1]-a1[n-1]+R2[n]]
    R1[n_]:=R1[n]=If[n<=1,0,R1[n-1]+4*EulerPhi[n-1]]
    R2[n_]:=(n-1)*EulerPhi[n-1]
    Table[a[n],{n,1,37}]
    (* Seppo Mustonen, May 13 2010 *)
    a[n_]:=2 Sum[(n-i) (n-j) Boole[CoprimeQ[i,j]], {i,1,n-1}, {j,1,n-1}] + 2 n^2 - 2 n; Array[a, 40] (* Vincenzo Librandi, Feb 05 2020 *)
  • Python
    from sympy import totient
    def A141255(n): return 2*(n-1)*(2*n-1) + 2*sum(totient(i)*(n-i)*(2*n-i) for i in range(2,n)) # Chai Wah Wu, Aug 16 2021

Formula

a(n) = A114043(n) - 1.
a(n) = 2*(n-1)*(2n-1) + 2*Sum_{i=2..n-1} (n-i)*(2n-i)*phi(i). - Chai Wah Wu, Aug 16 2021

A088658 Number of triangles in an n X n unit grid that have minimal possible area (of 1/2).

Original entry on oeis.org

0, 4, 32, 124, 320, 716, 1328, 2340, 3792, 5852, 8544, 12260, 16864, 22916, 30272, 39188, 49824, 62948, 78080, 96348, 117232, 141260, 168480, 200292, 235680, 276100, 321056, 371484, 427024, 489900, 558112, 634724, 718432, 810116, 909600, 1018388, 1135136, 1263828, 1402304, 1551908
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 21 2003

Keywords

Examples

			a(2)=4 because 4 (isosceles right) triangles with area 1/2 can be placed on a 2 X 2 grid.
		

Crossrefs

Cf. A045996.
The following eight sequences are all essentially the same. The simplest is A115004(n), which we denote by z(n). Then A088658(n) = 4*z(n-1); A114043(n) = 2*z(n-1)+2*n^2-2*n+1; A114146(n) = 2*A114043(n); A115005(n) = z(n-1)+n*(n-1); A141255(n) = 2*z(n-1)+2*n*(n-1); A290131(n) = z(n-1)+(n-1)^2; A306302(n) = z(n)+n^2+2*n. - N. J. A. Sloane, Feb 04 2020

Programs

  • Mathematica
    z[n_] := Sum[(n - i + 1)(n - j + 1) Boole[GCD[i, j] == 1], {i, n}, {j, n}];
    a[n_] := 4 z[n - 1];
    Array[a, 40] (* Jean-François Alcover, Mar 24 2020 *)
  • Python
    from sympy import totient
    def A088658(n): return 4*(n-1)**2 + 4*sum(totient(i)*(n-i)*(2*n-i) for i in range(2,n)) # Chai Wah Wu, Aug 15 2021

Formula

a(n+1) = 4*A115004(n).
a(n) = 4*(n-1)^2 + 4*Sum_{i=2..n-1} (n-i)*(2n-i)*phi(i). - Chai Wah Wu, Aug 15 2021

Extensions

a(7)-a(28) from Ray Chandler, May 03 2011
Corrected and extended by Ray Chandler, May 18 2011

A114146 Number of threshold functions on n X n grid.

Original entry on oeis.org

1, 2, 14, 58, 174, 402, 838, 1498, 2566, 4082, 6214, 8986, 12790, 17490, 23646, 31114, 40150, 50914, 64174, 79450, 97870, 118914, 143110, 170506, 202502, 238082, 278702, 323866, 374510, 430274, 493382, 561834, 638694, 722658, 814606, 914362, 1023430, 1140466
Offset: 0

Views

Author

N. J. A. Sloane, Feb 22 2006

Keywords

Comments

Also, number of intersections of a halfspace with an n X n grid. While A114043 counts cuts, this sequence counts sides of cuts. The only difference between this and twice A114043 is that this makes sense for the empty grid. This is the "labeled" version - rotations and reflections are not taken into account. - David Applegate, Feb 24 2006
In the terminology of Koplowitz et al., this is the number of linear dichotomies on a square grid. - N. J. A. Sloane, Mar 14 2020

Crossrefs

The following eight sequences are all essentially the same. The simplest is A115004(n), which we denote by z(n). Then A088658(n) = 4*z(n-1); A114043(n) = 2*z(n-1)+2*n^2-2*n+1; A114146(n) = 2*A114043(n); A115005(n) = z(n-1)+n*(n-1); A141255(n) = 2*z(n-1)+2*n*(n-1); A290131(n) = z(n-1)+(n-1)^2; A306302(n) = z(n)+n^2+2*n. - N. J. A. Sloane, Feb 04 2020

Programs

  • Mathematica
    a[0] = 1; a[n_] := 4 Sum[(n-i)(n-j) Boole[CoprimeQ[i, j]], {i, 1, n-1}, {j, 1, n-1}] + 4 n^2 - 4 n + 2;
    Array[a, 38, 0] (* Jean-François Alcover, Sep 04 2018, after Max Alekseyev in A114043 *)
  • Python
    from sympy import totient
    def A114146(n): return 1 if n == 0 else 8*n**2-12*n+6 + 4*sum(totient(i)*(n-i)*(2*n-i) for i in range(2,n)) # Chai Wah Wu, Aug 15 2021

Formula

For n>0, a(n) = 2*A114043(n).
For n>0, a(n) = 8*n^2 - 12*n + 6 + 4*Sum_{i=2..n-1} (n-i)*(2n-i)*phi(i). - Chai Wah Wu, Aug 15 2021

Extensions

Definition corrected by Max Alekseyev, Oct 23 2008
a(0)=1 prepended by Max Alekseyev, Jan 23 2015

A114999 Array read by antidiagonals: T(m,n) = Sum_{i=1..m, j=1..n, gcd(i,j)=1} (m+1-i)*(n+1-j), m>=1, n>=1.

Original entry on oeis.org

1, 3, 3, 6, 8, 6, 10, 16, 16, 10, 15, 26, 31, 26, 15, 21, 39, 50, 50, 39, 21, 28, 54, 75, 80, 75, 54, 28, 36, 72, 103, 120, 120, 103, 72, 36, 45, 92, 137, 164, 179, 164, 137, 92, 45, 55, 115, 175, 218, 244, 244, 218, 175, 115, 55, 66, 140, 218, 278, 324, 332, 324, 278, 218, 140
Offset: 1

Views

Author

N. J. A. Sloane, Feb 23 2006

Keywords

Comments

The corresponding triangle is A320541, counting (1/4) * number of ways to select 3 distinct points forming a triangle of unsigned area = 1/2 from a rectangle of grid points with side lengths j and k, written as triangle T(j,k), j<=k. - Hugo Pfoertner, Oct 22 2018

Examples

			The top left corner of the array is:
[1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78]
[3, 8, 16, 26, 39, 54, 72, 92, 115, 140, 168, 198]
[6, 16, 31, 50, 75, 103, 137, 175, 218, 265, 318, 374]
[10, 26, 50, 80, 120, 164, 218, 278, 346, 420, 504, 592]
[15, 39, 75, 120, 179, 244, 324, 413, 514, 623, 747, 877]
[21, 54, 103, 164, 244, 332, 441, 562, 699, 846, 1014, 1190]
[28, 72, 137, 218, 324, 441, 585, 745, 926, 1120, 1342, 1575]
[36, 92, 175, 278, 413, 562, 745, 948, 1178, 1424, 1706, 2002]
[45, 115, 218, 346, 514, 699, 926, 1178, 1463, 1768, 2118, 2485]
[55, 140, 265, 420, 623, 846, 1120, 1424, 1768, 2136, 2559, 3002]
[66, 168, 318, 504, 747, 1014, 1342, 1706, 2118, 2559, 3065, 3595]
[78, 198, 374, 592, 877, 1190, 1575, 2002, 2485, 3002, 3595, 4216]
...
		

Crossrefs

Cf. A114043, A115004 (main diagonal), A115005, A115006, A115007, A320541.

Programs

  • Maple
    T:=proc(m,n) local t1,i,j; t1:=0; for i from 1 to m do for j from 1 to n do if gcd(i,j)=1 then t1:=t1+(m+1-i)*(n+1-j); fi; od; od; t1; end;
  • Mathematica
    T[m_, n_] := Module[{t1, i, j}, t1 = 0; For[i = 1, i <= m, i++, For[j = 1, j <= n, j++, If[GCD[i, j] == 1 , t1 = t1 + (m+1-i)*(n+1-j)]]]; t1]; Table[T[m-n+1, n], {m, 1, 11}, {n, 1, m}] // Flatten (* Jean-François Alcover, Jan 07 2014, translated from Maple *)

A324043 Number of quadrilateral regions into which a figure made up of a row of n adjacent congruent rectangles is divided upon drawing diagonals of all possible rectangles.

Original entry on oeis.org

0, 2, 14, 34, 90, 154, 288, 462, 742, 1038, 1512, 2074, 2904, 3774, 4892, 6154, 7864, 9662, 12022, 14638, 17786, 20998, 25024, 29402, 34672, 40038, 46310, 53038, 61090, 69454, 79344, 89890, 101792, 113854, 127476, 141866, 158428, 175182, 193760, 213274, 235444, 258182, 283858, 310750, 339986
Offset: 1

Views

Author

Jinyuan Wang, May 01 2019

Keywords

Comments

A row of n adjacent congruent rectangles can only be divided into triangles (cf. A324042) or quadrilaterals when drawing diagonals. Proof is given in Alekseyev et al. (2015) under the transformation described in A306302.

Examples

			For k adjacent congruent rectangles, the number of quadrilateral regions in the j-th rectangle is:
k\j|  1   2   3   4   5   6   7  ...
---+--------------------------------
1  |  0,  0,  0,  0,  0,  0,  0, ...
2  |  1,  1,  0,  0,  0,  0,  0, ...
3  |  3,  8,  3,  0,  0,  0,  0, ...
4  |  5, 12, 12,  5,  0,  0,  0, ...
5  |  7, 22, 32, 22,  7,  0,  0, ...
6  |  9, 28, 40, 40, 28,  9,  0, ...
7  | 11, 38, 58, 74, 58, 38, 11, ...
...
a(4) = 5 + 12 + 12 + 5 = 34.
		

Crossrefs

Programs

  • Maple
    See Robert Israel link.
    There are also Maple programs for both A306302 and A324042. Then a := n -> A306302(n) - A324042(n); # N. J. A. Sloane, Mar 04 2020
  • Mathematica
    Table[Sum[Sum[(Boole[GCD[i, j] == 1] - 2 * Boole[GCD[i, j] == 2]) * (n + 1 - i) * (n + 1 - j), {j, 1, n}], {i, 1, n}] - n^2, {n, 1, 45}] (* Joshua Oliver, Feb 05 2020 *)
  • PARI
    { A324043(n) = sum(i=1, n, sum(j=1, n, ( (gcd(i, j)==1) - 2*(gcd(i,j)==2) ) * (n+1-i) * (n+1-j) )) - n^2; } \\ Max Alekseyev, Jul 08 2019
    
  • Python
    from sympy import totient
    def A324043(n): return 0 if n==1 else -2*(n-1)**2 + sum(totient(i)*(n+1-i)*(7*i-2*n-2) for i in range(2,n//2+1)) + sum(totient(i)*(n+1-i)*(2*n+2-i) for i in range(n//2+1,n+1)) # Chai Wah Wu, Aug 16 2021

Formula

a(n) = A115005(n+1) - A177719(n+1) - n - 1 = Sum_{i,j=1..n; gcd(i,j)=1} (n+1-i)*(n+1-j) - 2*Sum_{i,j=1..n; gcd(i,j)=2} (n+1-i)*(n+1-j) - n^2. - Max Alekseyev, Jul 08 2019
a(n) = A306302(n) - A324042(n).
For n>1, a(n) = -2(n-1)^2 + Sum_{i=2..floor(n/2)} (n+1-i)*(7i-2n-2)*phi(i) + Sum_{i=floor(n/2)+1..n} (n+1-i)*(2n+2-i)*phi(i). - Chai Wah Wu, Aug 16 2021

Extensions

a(8)-a(23) from Robert Israel, Jul 07 2019
Terms a(24) onward from Max Alekseyev, Jul 08 2019

A049695 Array T read by diagonals; T(i,j) is the number of nonnegative slopes of lines determined by 2 lattice points in [ 0,i ] X [ 0,j ] if i > 0; T(0,j)=1 if j > 0; T(0,0)=0.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 4, 4, 1, 1, 5, 6, 6, 5, 1, 1, 6, 7, 8, 7, 6, 1, 1, 7, 9, 10, 10, 9, 7, 1, 1, 8, 10, 13, 12, 13, 10, 8, 1, 1, 9, 12, 14, 16, 16, 14, 12, 9, 1, 1, 10, 13, 17, 17, 20, 17, 17, 13, 10, 1, 1, 11, 15, 19, 21, 22, 22, 21, 19, 15, 11, 1, 1, 12, 16, 21, 23, 27, 24, 27
Offset: 0

Views

Author

Keywords

Comments

The infinity slope is not counted unless i=0 and j>0. - Max Alekseyev, Oct 23 2008

Examples

			Diagonals (each starting on row 1): {0}; {1,1}; {1,2,1}; ...
		

Crossrefs

Formula

For m,n > 0, T(m,n) = 1 + U(m,n) = 1 + Sum_{i=1..m, j=1..n, gcd(i,j)=1} 1. - Max Alekseyev, Oct 23 2008

Extensions

More terms from Max Alekseyev, Oct 23 2008
Showing 1-10 of 22 results. Next