A115005 a(n) = (A114043(n) - 1)/2.
0, 3, 14, 43, 100, 209, 374, 641, 1020, 1553, 2246, 3197, 4372, 5911, 7778, 10037, 12728, 16043, 19862, 24467, 29728, 35777, 42626, 50625, 59520, 69675, 80966, 93627, 107568, 123345, 140458, 159673, 180664, 203651, 228590, 255857, 285116, 317363, 352058
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..1000
- N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence)
Crossrefs
The following eight sequences are all essentially the same. The simplest is A115004(n), which we denote by z(n). Then A088658(n) = 4*z(n-1); A114043(n) = 2*z(n-1)+2*n^2-2*n+1; A114146(n) = 2*A114043(n); A115005(n) = z(n-1)+n*(n-1); A141255(n) = 2*z(n-1)+2*n*(n-1); A290131(n) = z(n-1)+(n-1)^2; A306302(n) = z(n)+n^2+2*n. - N. J. A. Sloane, Feb 04 2020
Programs
-
Mathematica
a[n_]:=2 Sum[(n-i) (n-j) Boole[CoprimeQ[i,j]], {i, 1, n-1}, {j, 1, n-1}] / 2 + n^2 - n; Array[a, 40] (* Vincenzo Librandi, Feb 05 2020 *)
-
Python
from sympy import totient def A115005(n): return (n-1)*(2*n-1) + sum(totient(i)*(n-i)*(2*n-i) for i in range(2,n)) # Chai Wah Wu, Aug 15 2021
Formula
a(n) = (n-1)*(2n-1) + Sum_{i=2..n-1} (n-i)*(2n-i)*phi(i). - Chai Wah Wu, Aug 15 2021
Extensions
Offset corrected by Max Alekseyev, Apr 10 2019
Comments