A306302
Number of regions into which a figure made up of a row of n adjacent congruent rectangles is divided upon drawing diagonals of all possible rectangles (a(0)=0 by convention).
Original entry on oeis.org
0, 4, 16, 46, 104, 214, 380, 648, 1028, 1562, 2256, 3208, 4384, 5924, 7792, 10052, 12744, 16060, 19880, 24486, 29748, 35798, 42648, 50648, 59544, 69700, 80992, 93654, 107596, 123374, 140488, 159704, 180696, 203684, 228624, 255892, 285152, 317400, 352096, 389576
Offset: 0
- Jinyuan Wang, Table of n, a(n) for n = 0..1000
- Max Alekseyev, Illustration for n = 3.
- M. A. Alekseyev. On the number of two-dimensional threshold functions, arXiv:math/0602511 [math.CO], 2006-2010; doi:10.1137/090750184, SIAM J. Disc. Math. 24(4), 2010, pp. 1617-1631.
- M. A. Alekseyev, M. Basova, and N. Yu. Zolotykh. On the minimal teaching sets of two-dimensional threshold functions, SIAM Journal on Discrete Mathematics 29:1 (2015), 157-165. doi:10.1137/140978090.
- Lars Blomberg, Scott R. Shannon and N. J. A. Sloane, Graphical Enumeration and Stained Glass Windows, 1: Rectangular Grids, (2020). Also arXiv:2009.07918.
- M. Griffiths, Counting the regions in a regular drawing of K_{n,n}, J. Int. Seq. 13 (2010) # 10.8.5, Lemma 2.
- Robert Israel, Maple program, Feb 07 2019
- S. Legendre, The Number of Crossings in a Regular Drawing of the Complete Bipartite Graph, J. Integer Seqs., Vol. 12, 2009.
- Scott R. Shannon, Colored illustration for T(1,1)
- Scott R. Shannon, Colored illustration for T(2,1)
- Scott R. Shannon, Colored illustration for T(3,1)
- Scott R. Shannon, Colored illustration for T(4,1)
- Scott R. Shannon, Colored illustration for T(5,1)
- Scott R. Shannon, Colored illustration for T(6,1)
- Scott R. Shannon, Colored illustration for T(7,1)
- Scott R. Shannon, Colored illustration for T(8,1)
- Scott R. Shannon, Colored illustration for T(9,1)
- Scott R. Shannon, Colored illustration for T(10,1)
- Scott R. Shannon, Colored illustration for T(11,1)
- Scott R. Shannon, Colored illustration for T(12,1)
- Scott R. Shannon, Colored illustration for T(13,1)
- Scott R. Shannon, Colored illustration for T(14,1)
- Scott R. Shannon, Colored illustration for T(15,1)
- N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence)
- Index entries for sequences related to stained glass windows
See
A331755 for the number of vertices,
A331757 for the number of edges.
-
# Maple from N. J. A. Sloane, Mar 04 2020, starting at n=1: First define z(n) = A115004
z := proc(n)
local a, b, r ;
r := 0 ;
for a from 1 to n do
for b from 1 to n do
if igcd(a, b) = 1 then
r := r+(n+1-a)*(n+1-b);
end if;
end do:
end do:
r ;
end proc:
a := n-> z(n)+n^2+2*n;
[seq(a(n), n=1..50)];
-
z[n_] := Sum[(n - i + 1)(n - j + 1) Boole[GCD[i, j] == 1], {i, n}, {j, n}];
a[0] = 0;
a[n_] := z[n] + n^2 + 2n;
a /@ Range[0, 40] (* Jean-François Alcover, Mar 24 2020 *)
-
from sympy import totient
def A306302(n): return 2*n*(n+1) + sum(totient(i)*(n+1-i)*(2*n+2-i) for i in range(2,n+1)) # Chai Wah Wu, Aug 16 2021
A331757
Number of edges in a figure made up of a row of n adjacent congruent rectangles upon drawing diagonals of all possible rectangles.
Original entry on oeis.org
8, 28, 80, 178, 372, 654, 1124, 1782, 2724, 3914, 5580, 7626, 10352, 13590, 17540, 22210, 28040, 34670, 42760, 51962, 62612, 74494, 88508, 104042, 121912, 141534, 163664, 187942, 215636, 245490, 279260, 316022, 356456, 399898, 447612, 498698, 555352
Offset: 1
A306302 gives number of regions in the figure.
-
Table[n^2 + 4n + 1 + Sum[Sum[(2 * Boole[GCD[i, j] == 1] - Boole[GCD[i, j] == 2]) * (n + 1 - i) * (n + 1 - j), {j, 1, n}], {i, 1, n}], {n, 1, 37}] (* Joshua Oliver, Feb 05 2020 *)
-
from sympy import totient
def A331757(n): return 8 if n == 1 else 2*(n*(n+3) + sum(totient(i)*(n+1-i)*(n+1+i) for i in range(2,n//2+1)) + sum(totient(i)*(n+1-i)*(2*n+2-i) for i in range(n//2+1,n+1))) # Chai Wah Wu, Aug 16 2021
A333288
Triangle read by rows: consider a figure made up of a row of n congruent rectangles and the diagonals of all visible rectangles; T(n,k) (1 <= k <= n) is the number of regions in the k-th rectangle.
Original entry on oeis.org
4, 8, 8, 12, 22, 12, 16, 36, 36, 16, 20, 52, 70, 52, 20, 24, 66, 100, 100, 66, 24, 28, 82, 134, 160, 134, 82, 28, 32, 98, 166, 218, 218, 166, 98, 32, 36, 116, 198, 276, 310, 276, 198, 116, 36, 40, 134, 230, 328, 396, 396, 328, 230, 134, 40, 44, 154, 266, 386
Offset: 1
Triangle begins:
4;
8, 8;
12, 22, 12;
16, 36, 36, 16;
20, 52, 70, 52, 20;
24, 66, 100, 100, 66, 24;
28, 82, 134, 160, 134, 82, 28;
...
A324042
Number of triangular regions into which a figure made up of a row of n adjacent congruent rectangles is divided upon drawing diagonals of all possible rectangles.
Original entry on oeis.org
4, 14, 32, 70, 124, 226, 360, 566, 820, 1218, 1696, 2310, 3020, 4018, 5160, 6590, 8196, 10218, 12464, 15110, 18012, 21650, 25624, 30142, 35028, 40954, 47344, 54558, 62284, 71034, 80360, 90806, 101892, 114770, 128416, 143286, 158972, 176914, 195816, 216350, 237908, 261546, 286304, 313102, 341100
Offset: 1
For k adjacent congruent rectangles, the number of triangular regions in the j-th rectangle is:
k\j| 1 2 3 4 5 6 7 ...
---+--------------------------------
1 | 4, 0, 0, 0, 0, 0, 0, ...
2 | 7, 7, 0, 0, 0, 0, 0, ...
3 | 9, 14, 9, 0, 0, 0, 0, ...
4 | 11, 24, 24, 11, 0, 0, 0, ...
5 | 13, 30, 38, 30, 13, 0, 0, ...
6 | 15, 38, 60, 60, 38, 15, 0, ...
7 | 17, 44, 76, 86, 76, 44, 17, ...
...
a(4) = 11 + 24 + 24 + 11 = 70.
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
- M. A. Alekseyev, M. Basova, and N. Yu. Zolotykh. On the minimal teaching sets of two-dimensional threshold functions. SIAM Journal on Discrete Mathematics 29:1 (2015), 157-165.
- Lars Blomberg, Scott R. Shannon, and N. J. A. Sloane, Graphical Enumeration and Stained Glass Windows, 1: Rectangular Grids, (2021). Also arXiv:2009.07918.
- Robert Israel, Maple program
- Jinyuan Wang, Illustration for n = 1, 2, 3, 4, 5
-
V := proc(m,n,q) local a,i,j; a:=0;
for i from 1 to m do for j from 1 to n do
if gcd(i,j)=q then a:=a+(m+1-i)*(n+1-j); fi; od: od: a; end;
a := n -> 2*( n*(n+1) + V(n,n,2) );
[seq(a(n), n=1..30)]; # N. J. A. Sloane, Mar 04 2020
See also Robert Israel link.
-
Table[2 * (n^2 + n + Sum[Sum[Boole[GCD[i, j] == 2] * (n + 1 - i) * (n + 1 - j), {j, 1, n}], {i, 1, n}]), {n, 1, 45}] (* Joshua Oliver, Feb 05 2020 *)
-
{ A324042(n) = 2*((n+1)*n + sum(i=1, n, sum(j=1, n, (gcd(i, j)==2)*(n+1-i)*(n+1-j))) ); } \\ Max Alekseyev, Jul 08 2019
-
from sympy import totient
def A324042(n): return 2*(2*n**2-n+1 + 2*sum(totient(i)*(n+1-2*i)*(n+1-i) for i in range(2,n//2+1))) # Chai Wah Wu, Aug 16 2021
A333286
Triangle read by rows: consider a figure made up of a row of n congruent rectangles and the diagonals of all visible rectangles; T(n,k) (1 <= k <= n) is the number of triangular regions in the k-th rectangle.
Original entry on oeis.org
4, 7, 7, 9, 14, 9, 11, 24, 24, 11, 13, 30, 38, 30, 13, 15, 38, 60, 60, 38, 15, 17, 44, 76, 86, 76, 44, 17, 19, 52, 92, 120, 120, 92, 52, 19, 21, 58, 106, 146, 158, 146, 106, 58, 21, 23, 66, 126, 178, 216, 216, 178, 126, 66, 23, 25, 72, 142, 206, 264, 278
Offset: 1
Triangle begins:
4,
7, 7,
9, 14, 9,
11, 24, 24, 11,
13, 30, 38, 30, 13,
15, 38, 60, 60, 38, 15,
17, 44, 76, 86, 76, 44, 17,
...
A333287
Triangle read by rows: consider a figure made up of a row of n congruent rectangles and the diagonals of all visible rectangles; T(n,k) (1 <= k <= n) is the number of quadrilateral regions in the k-th rectangle.
Original entry on oeis.org
0, 1, 1, 3, 8, 3, 5, 12, 12, 5, 7, 22, 32, 22, 7, 9, 28, 40, 40, 28, 9, 11, 38, 58, 74, 58, 38, 11, 13, 46, 74, 98, 98, 74, 46, 13, 15, 58, 92, 130, 152, 130, 92, 58, 15, 17, 68, 104, 150, 180, 180, 150, 104, 68, 17, 19, 82, 124, 180, 224, 254, 224, 180, 124, 82, 19
Offset: 1
Triangle begins:
0,
1, 1,
3, 8, 3,
5, 12, 12, 5,
7, 22, 32, 22, 7,
9, 28, 40, 40, 28, 9,
11, 38, 58, 74, 58, 38, 11,
...
A332356
Consider a partition of the triangle with vertices (0, 0), (1, 0), (0, 1) by the lines a_1*x_1 + a_2*x_2 = 1, where (x_1, x_2) is in {1, 2,...,m} X {1, 2,...,n}, m >= 1, n >= 1. Triangle read by rows: T(m,n) = number of quadrilateral cells in the partition, for m >= n >= 1.
Original entry on oeis.org
0, 0, 0, 0, 1, 2, 0, 3, 6, 14, 0, 6, 10, 22, 34, 0, 10, 17, 36, 56, 90, 0, 15, 24, 49, 74, 118, 154, 0, 21, 34, 68, 102, 161, 211, 288, 0, 28, 44, 87, 130, 205, 268, 365, 462, 0, 36, 57, 111, 166, 261, 341, 463, 586, 742, 0, 45, 70, 135, 200, 313, 406, 550, 694, 878, 1038
Offset: 1
Triangle begins:
0,
0, 0,
0, 1, 2,
0, 3, 6, 14,
0, 6, 10, 22, 34,
0, 10, 17, 36, 56, 90,
0, 15, 24, 49, 74, 118, 154,
0, 21, 34, 68, 102, 161, 211, 288,
0, 28, 44, 87, 130, 205, 268, 365, 462,
0, 36, 57, 111, 166, 261, 341, 463, 586, 742,
...
- M. A. Alekseyev, M. Basova, and N. Yu. Zolotykh. On the minimal teaching sets of two-dimensional threshold functions. SIAM Journal on Discrete Mathematics 29:1 (2015), 157-165. doi:10.1137/140978090. See Theorem 13.
- N. J. A. Sloane, Illustration for (m,n) = (2,2), (3,1), (3,2), (3,3) [c_3 = number of triangles, c_4 = number of quadrilaterals; c, e, v = numbers of cells, edges, vertices]
-
# VR(m,n,q) is f_q(m,n) from the Alekseyev et al. reference.
VR := proc(m,n,q) local a,i,j; a:=0;
for i from -m+1 to m-1 do for j from -n+1 to n-1 do
if gcd(i,j)=q then a:=a+(m-abs(i))*(n-abs(j)); fi; od: od: a; end;
ct4 := proc(m,n) local i; global VR;
if m=1 or n=1 then 0 else VR(m,n,1)/4-VR(m,n,2)/2-m/2-n/2-1; fi; end;
for m from 1 to 12 do lprint([seq(ct4(m,n),n=1..m)]); od:
-
VR[m_, n_, q_] := Module[{a = 0, i, j}, For[i = -m + 1, i <= m - 1, i++, For[j = -n + 1, j <= n - 1, j++, If[GCD[i, j] == q, a = a + (m - Abs[i])*(n - Abs[j])]]];a];
ct4 [m_, n_] := If[m == 1 || n == 1, 0, VR[m, n, 1]/4 - VR[m, n, 2]/2 - m/2 - n/2 - 1];
Table[ct4[m, n], {m, 1, 12}, {n, 1, m}] // Flatten (* Jean-François Alcover, Mar 09 2023, after Maple code *)
A369178
Irregular table read by rows: T(n,k) is the number of k-sided regions, k>=3, in a graph of n adjacent rectangles in a row with all possible diagonals drawn, as in A306302, but without the rectangles' edges which are perpendicular to the row.
Original entry on oeis.org
2, 8, 4, 22, 14, 52, 34, 98, 82, 184, 146, 302, 268, 484, 426, 8, 710, 694, 4, 1064, 986, 8, 1498, 1436, 12, 2056, 1986, 12, 2710, 2780, 12, 3624, 3630, 24, 4682, 4728, 20, 6012, 5970, 24, 7518, 7628, 28, 9408, 9406, 32, 11526, 11702, 40, 14028, 14246, 64, 16782, 17330, 60
Offset: 1
The table begins:
2;
8, 4;
22, 14;
52, 34;
98, 82;
184, 146;
302, 268;
484, 426, 8;
710, 694, 4;
1064, 986, 8;
1498, 1436, 12;
2056, 1986, 12;
2710, 2780, 12;
3624, 3630, 24;
4682, 4728, 20;
6012, 5970, 24;
7518, 7628, 28;
9408, 9406, 32;
11526, 11702, 40;
14028, 14246, 64;
16782, 17330, 60;
20220, 20518, 68;
23998, 24468, 80;
28304, 28786, 84;
.
.
A332610
Triangle read by rows: T(m,n) = number of triangular regions in a "frame" of size m X n with m >= n >= 1 (see Comments in A331457 for definition of frame).
Original entry on oeis.org
4, 14, 48, 32, 102, 128, 70, 192, 204, 288, 124, 326, 312, 396, 512, 226, 524, 516, 600, 716, 928, 360, 802, 784, 868, 984, 1196, 1472, 566, 1192, 1196, 1280, 1396, 1608, 1884, 2304, 820, 1634, 1704, 1788, 1904, 2116, 2392, 2812, 3328, 1218, 2296, 2500, 2584, 2700, 2912, 3188, 3608, 4124, 4928
Offset: 1
Triangle begins:
[4],
[14, 48],
[32, 102, 128],
[70, 192, 204, 288],
[124, 326, 312, 396, 512],
[226, 524, 516, 600, 716, 928],
[360, 802, 784, 868, 984, 1196, 1472],
[566, 1192, 1196, 1280, 1396, 1608, 1884, 2304],
[820, 1634, 1704, 1788, 1904, 2116, 2392, 2812, 3328],
[1218, 2296, 2500, 2584, 2700, 2912, 3188, 3608, 4124, 4928],
[1696, 3074, 3456, 3540, 3656, 3868, 4144, 4564, 5080, 5884, 6848],
[2310, 4052, 4684, 4768, 4884, 5096, 5372, 5792, 6308, 7112, 8076, 9312],
...
A332611
Triangle read by rows: T(m,n) = number of quadrilateral regions in a "frame" of size m X n with m >= n >= 1 (see Comments in A331457 for definition of frame).
Original entry on oeis.org
0, 2, 8, 14, 36, 80, 34, 92, 144, 208, 90, 194, 280, 356, 504, 154, 336, 432, 520, 680, 856, 288, 554, 724, 824, 996, 1184, 1512, 462, 812, 1096, 1208, 1392, 1592, 1932, 2352, 742, 1314, 1680, 1804, 2000, 2212, 2564, 2996, 3640, 1038, 1756, 2296, 2432, 2640, 2864, 3228, 3672, 4328, 5016
Offset: 1
Triangle begins:
[0],
[2, 8],
[14, 36, 80],
[34, 92, 144, 208],
[90, 194, 280, 356, 504],
[154, 336, 432, 520, 680, 856],
[288, 554, 724, 824, 996, 1184, 1512],
[462, 812, 1096, 1208, 1392, 1592, 1932, 2352],
[742, 1314, 1680, 1804, 2000, 2212, 2564, 2996, 3640],
[1038, 1756, 2296, 2432, 2640, 2864, 3228, 3672, 4328, 5016],
[1512, 2508, 3268, 3416, 3636, 3872, 4248, 4704, 5372, 6072, 7128],
[2074, 3252, 4416, 4576, 4808, 5056, 5444, 5912, 6592, 7304, 8372, 9616],
....
Showing 1-10 of 10 results.
Comments