cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A115004 a(n) = Sum_{i=1..n, j=1..n, gcd(i,j)=1} (n+1-i)*(n+1-j).

Original entry on oeis.org

1, 8, 31, 80, 179, 332, 585, 948, 1463, 2136, 3065, 4216, 5729, 7568, 9797, 12456, 15737, 19520, 24087, 29308, 35315, 42120, 50073, 58920, 69025, 80264, 92871, 106756, 122475, 139528, 158681, 179608, 202529, 227400, 254597, 283784, 315957, 350576, 387977
Offset: 1

Views

Author

N. J. A. Sloane, Feb 23 2006

Keywords

Comments

Also (1/4) * number of ways to select 3 distinct points forming a triangle of unsigned area = 1/2 from a square of grid points with side length n. Diagonal of triangle A320541. - Hugo Pfoertner, Oct 22 2018
From Chai Wah Wu, Aug 18 2021: (Start)
Theorem: a(n) = n^2 + Sum_{i=2..n} (n+1-i)*(2*n+2-i)*phi(i).
Proof: Since gcd(n,n) = 1 if and only if n = 1, Sum_{i=1..n, j=1..n, gcd(i,j)=1} (n+1-i)*(n+1-j) = n^2 + Sum_{i=1..n, j=1..n, gcd(i,j)=1, (i,j) <> (1,1)} (n+1-i)*(n+1-j)
= n^2 + Sum_{i=2..n, j=1..i, gcd(i,j)=1} (n+1-i)*(n+1-j) + Sum_{j=2..n, i=1..j, gcd(i,j)=1} (n+1-i)*(n+1-j) = n^2 + 2*Sum_{i=2..n, j=1..i, gcd(i,j)=1} (n+1-i)*(n+1-j), i.e., the diagonal is not double-counted.
This is equal to n^2 + 2*Sum_{i=2..n, j is a totative of i} (n+1-i)*(n+1-j). Since Sum_{j is a totative of i} 1 = phi(i) and for i > 1, Sum_{j is a totative of i} j = i*phi(i)/2, the conclusion follows.
Similar argument holds for corresponding formulas for A088658, A114043, A114146, A115005, etc.
(End)

Crossrefs

The following eight sequences are all essentially the same. The simplest is the present sequence, A115004(n), which we denote by z(n). Then A088658(n) = 4*z(n-1); A114043(n) = 2*z(n-1)+2*n^2-2*n+1; A114146(n) = 2*A114043(n); A115005(n) = z(n-1)+n*(n-1); A141255(n) = 2*z(n-1)+2*n*(n-1); A290131(n) = z(n-1)+(n-1)^2; A306302(n) = z(n)+n^2+2*n. - N. J. A. Sloane, Feb 04 2020
Main diagonal of array in A114999.

Programs

  • Maple
    A115004 := proc(n)
        local a,b,r ;
        r := 0 ;
        for a from 1 to n do
        for b from 1 to n do
            if igcd(a,b) = 1 then
                r := r+(n+1-a)*(n+1-b);
            end if;
        end do:
        end do:
        r ;
    end proc:
    seq(A115004(n),n=1..30); # R. J. Mathar, Jul 20 2017
  • Mathematica
    a[n_] := Sum[(n-i+1) (n-j+1) Boole[GCD[i, j] == 1], {i, n}, {j, n}];
    Array[a, 40] (* Jean-François Alcover, Mar 23 2020 *)
  • PARI
    a(n) = n^2 + sum(i=2, n, (n+1-i)*(2*n+2-i)*eulerphi(i)); \\ Michel Marcus, May 08 2024
  • Python
    from math import gcd
    def a115004(n):
        r=0
        for a in range(1, n + 1):
            for b in range(1, n + 1):
                if gcd(a, b)==1:
                    r+=(n + 1 - a)*(n + 1 - b)
        return r
    print([a115004(n) for n in range(1, 51)]) # Indranil Ghosh, Jul 21 2017
    
  • Python
    from sympy import totient
    def A115004(n): return n**2 + sum(totient(i)*(n+1-i)*(2*n+2-i) for i in range(2,n+1)) # Chai Wah Wu, Aug 15 2021
    

Formula

a(n) = Sum_{i=1..n, j=1..n, gcd(i,j)=1} (n+1-i)*(n+1-j).
As n -> oo, a(n) ~ (3/2)*n^4/Pi^2. This follows from Max Alekseyev's formula in A114043. - N. J. A. Sloane, Jul 03 2020
a(n) = n^2 + Sum_{i=2..n} (n+1-i)*(2n+2-i)*phi(i). - Chai Wah Wu, Aug 15 2021

A306302 Number of regions into which a figure made up of a row of n adjacent congruent rectangles is divided upon drawing diagonals of all possible rectangles (a(0)=0 by convention).

Original entry on oeis.org

0, 4, 16, 46, 104, 214, 380, 648, 1028, 1562, 2256, 3208, 4384, 5924, 7792, 10052, 12744, 16060, 19880, 24486, 29748, 35798, 42648, 50648, 59544, 69700, 80992, 93654, 107596, 123374, 140488, 159704, 180696, 203684, 228624, 255892, 285152, 317400, 352096, 389576
Offset: 0

Views

Author

Paarth Jain, Feb 05 2019

Keywords

Comments

Assuming that the rectangles have vertices at (k,0) and (k,1), k=0..n, the projective map (x,y) -> ((1-y)/(x+1),y/(x+1)) maps their partition to the partition of the right isosceles triangle described by Alekseyev et al. (2015), for which Theorem 13 gives the number of regions, line segments, and intersection points. - Max Alekseyev, Apr 10 2019
The figure is made up of A324042 triangles and A324043 quadrilaterals. - N. J. A. Sloane, Mar 03 2020

Crossrefs

See A331755 for the number of vertices, A331757 for the number of edges.
A column of A288187. See A288177 for additional references.
Also a column of A331452 and A356790.
The following eight sequences are all essentially the same. The simplest is A115004(n), which we denote by z(n). Then A088658(n) = 4*z(n-1); A114043(n) = 2*z(n-1)+2*n^2-2*n+1; A114146(n) = 2*A114043(n); A115005(n) = z(n-1)+n*(n-1); A141255(n) = 2*z(n-1)+2*n*(n-1); A290131(n) = z(n-1)+(n-1)^2; A306302(n) = z(n)+n^2+2*n. - N. J. A. Sloane, Feb 04 2020

Programs

  • Maple
    # Maple from N. J. A. Sloane, Mar 04 2020, starting at n=1:  First define z(n) = A115004
    z := proc(n)
        local a, b, r ;
        r := 0 ;
        for a from 1 to n do
        for b from 1 to n do
            if igcd(a, b) = 1 then
                r := r+(n+1-a)*(n+1-b);
            end if;
        end do:
        end do:
        r ;
    end proc:
    a := n-> z(n)+n^2+2*n;
    [seq(a(n), n=1..50)];
  • Mathematica
    z[n_] := Sum[(n - i + 1)(n - j + 1) Boole[GCD[i, j] == 1], {i, n}, {j, n}];
    a[0] = 0;
    a[n_] := z[n] + n^2 + 2n;
    a /@ Range[0, 40] (* Jean-François Alcover, Mar 24 2020 *)
  • Python
    from sympy import totient
    def A306302(n): return 2*n*(n+1) + sum(totient(i)*(n+1-i)*(2*n+2-i) for i in range(2,n+1)) # Chai Wah Wu, Aug 16 2021

Formula

a(n) = n + (A114043(n+1) - 1)/2, conjectured by N. J. A. Sloane, Feb 07 2019; proved by Max Alekseyev, Apr 10 2019
a(n) = n + A115005(n+1) = n + A141255(n+1)/2. - Max Alekseyev, Apr 10 2019
a(n) = A324042(n) + A324043(n). - Jinyuan Wang, Mar 19 2020
a(n) = Sum_{i=1..n, j=1..n, gcd(i,j)=1} (n+1-i)*(n+1-j) + n^2 + 2*n. - N. J. A. Sloane, Apr 11 2020
a(n) = 2n(n+1) + Sum_{i=2..n} (n+1-i)*(2n+2-i)*phi(i). - Chai Wah Wu, Aug 16 2021

Extensions

a(6)-a(20) from Robert Israel, Feb 07 2019
Edited and more terms added by Max Alekseyev, Apr 10 2019
a(0) added by N. J. A. Sloane, Feb 04 2020

A290131 Number of regions in a regular drawing of the complete bipartite graph K_{n,n}.

Original entry on oeis.org

0, 2, 12, 40, 96, 204, 368, 634, 1012, 1544, 2236, 3186, 4360, 5898, 7764, 10022, 12712, 16026, 19844, 24448, 29708, 35756, 42604, 50602, 59496, 69650, 80940, 93600, 107540, 123316, 140428, 159642, 180632, 203618, 228556, 255822, 285080, 317326, 352020, 389498
Offset: 1

Views

Author

R. J. Mathar, Jul 20 2017

Keywords

Crossrefs

For K_n see A007569, A007678, A135563.
The following eight sequences are all essentially the same. The simplest is A115004(n), which we denote by z(n). Then A088658(n) = 4*z(n-1); A114043(n) = 2*z(n-1)+2*n^2-2*n+1; A114146(n) = 2*A114043(n); A115005(n) = z(n-1)+n*(n-1); A141255(n) = 2*z(n-1)+2*n*(n-1); A290131(n) = z(n-1)+(n-1)^2; A306302(n) = z(n)+n^2+2*n. - N. J. A. Sloane, Feb 04 2020

Programs

  • Maple
    A290131 := proc(n)
        A115004(n-1)+(n-1)^2 ;
    end proc:
    seq(A290131(n),n=1..30) ;
  • Mathematica
    z[n_] := Sum[(n - i + 1)(n - j + 1) Boole[GCD[i, j] == 1], {i, n}, {j, n}];
    a[n_] := z[n - 1] + (n - 1)^2;
    Array[a, 40] (* Jean-François Alcover, Mar 24 2020 *)
  • Python
    from math import gcd
    def a115004(n):
        r=0
        for a in range(1, n + 1):
            for b in range(1, n + 1):
                if gcd(a, b)==1:r+=(n + 1 - a)*(n + 1 - b)
        return r
    def a(n): return a115004(n - 1) + (n - 1)**2
    print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jul 20 2017, after Maple code
    
  • Python
    from sympy import totient
    def A290131(n): return 2*(n-1)**2 + sum(totient(i)*(n-i)*(2*n-i) for i in range(2,n)) # Chai Wah Wu, Aug 16 2021

Formula

a(n) = A115004(n-1) + (n-1)^2.
a(n) = 2*(n-1)^2 + Sum_{i=2..n-1} (n-i)*(2n-i)*phi(i). - Chai Wah Wu, Aug 16 2021

A114043 Take an n X n square grid of points in the plane; a(n) = number of ways to divide the points into two sets using a straight line.

Original entry on oeis.org

1, 7, 29, 87, 201, 419, 749, 1283, 2041, 3107, 4493, 6395, 8745, 11823, 15557, 20075, 25457, 32087, 39725, 48935, 59457, 71555, 85253, 101251, 119041, 139351, 161933, 187255, 215137, 246691, 280917, 319347, 361329, 407303
Offset: 1

Views

Author

Ugo Merlone (merlone(AT)econ.unito.it) and N. J. A. Sloane, Feb 22 2006

Keywords

Comments

Also, half of the number of two-dimensional threshold functions (A114146).
The line may not pass through any point. This is the "labeled" version - rotations and reflections are not taken into account (cf. A116696).
The number of ways to divide a (2n) X (2n) grid into two sets of equal size is given by 2*A099957(n). - David Applegate, Feb 23 2006
All terms are odd: the line that misses the grid contributes 1 to the total and all other lines contribute 2, 4 or 8, so the total must be odd.
What can be said about the 3-D generalization? - Max Alekseyev, Feb 27 2006

Examples

			Examples: the two sets are indicated by X's and o's.
a(2) = 7:
XX oX Xo XX XX oo oX
XX XX XX Xo oX XX oX
--------------------
a(3) = 29:
XXX oXX ooX ooo ooX ooo
XXX XXX XXX XXX oXX oXX
XXX XXX XXX XXX XXX XXX
-1- -4- -8- -4- -4- -8- Total = 29
--------------------
a(4)= 87:
XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX XXXX XXXo XXXo XXXo XXoo XXoo
XXXX XXXo XXoo Xooo oooo XXoo Xooo oooo Xooo oooo
--1- --4- --8- --8- --4- --4- --8- --8- --8- --8-
XXXX XXXX XXXX XXXX XXXX
XXXo XXXX XXXX XXXo XXXo
XXoo Xooo oooo Xooo XXoo
Xooo oooo oooo oooo oooo
--4- --8- --2- --4- --8- Total = 87.
--------------------
		

Crossrefs

Cf. A114499, A115004, A115005, A116696 (unlabeled case), A114531, A114146.
Cf. A099957.
The following eight sequences are all essentially the same. The simplest is A115004(n), which we denote by z(n). Then A088658(n) = 4*z(n-1); A114043(n) = 2*z(n-1)+2*n^2-2*n+1; A114146(n) = 2*A114043(n); A115005(n) = z(n-1)+n*(n-1); A141255(n) = 2*z(n-1)+2*n*(n-1); A290131(n) = z(n-1)+(n-1)^2; A306302(n) = z(n)+n^2+2*n. - N. J. A. Sloane, Feb 04 2020

Programs

  • Mathematica
    a[n_] := 2*Sum[(n - i)*(n - j)*Boole[CoprimeQ[i, j]], {i, 1, n - 1}, {j, 1, n - 1}] + 2*n^2 - 2*n + 1; Array[a, 40] (* Jean-François Alcover, Apr 25 2016, after Max Alekseyev *)
  • Python
    from sympy import totient
    def A114043(n): return 4*n**2-6*n+3 + 2*sum(totient(i)*(n-i)*(2*n-i) for i in range(2,n)) # Chai Wah Wu, Aug 15 2021

Formula

Let V(m,n) = Sum_{i=1..m, j=1..n, gcd(i,j)=1} (m+1-i)*(n+1-j); then a(n+1) = 2*(n^2 + n + V(n,n)) + 1. - Max Alekseyev, Feb 22 2006
a(n) ~ (3/Pi^2) * n^4. - Max Alekseyev, Feb 22 2006
a(n) = A141255(n) + 1. - T. D. Noe, Jun 17 2008
a(n) = 4*n^2 - 6*n + 3 + 2*Sum_{i=2..n-1} (n-i)*(2n-i)*phi(i). - Chai Wah Wu, Aug 15 2021

Extensions

More terms from Max Alekseyev, Feb 22 2006

A115005 a(n) = (A114043(n) - 1)/2.

Original entry on oeis.org

0, 3, 14, 43, 100, 209, 374, 641, 1020, 1553, 2246, 3197, 4372, 5911, 7778, 10037, 12728, 16043, 19862, 24467, 29728, 35777, 42626, 50625, 59520, 69675, 80966, 93627, 107568, 123345, 140458, 159673, 180664, 203651, 228590, 255857, 285116, 317363, 352058
Offset: 1

Views

Author

N. J. A. Sloane, Feb 23 2006

Keywords

Crossrefs

The following eight sequences are all essentially the same. The simplest is A115004(n), which we denote by z(n). Then A088658(n) = 4*z(n-1); A114043(n) = 2*z(n-1)+2*n^2-2*n+1; A114146(n) = 2*A114043(n); A115005(n) = z(n-1)+n*(n-1); A141255(n) = 2*z(n-1)+2*n*(n-1); A290131(n) = z(n-1)+(n-1)^2; A306302(n) = z(n)+n^2+2*n. - N. J. A. Sloane, Feb 04 2020

Programs

  • Mathematica
    a[n_]:=2 Sum[(n-i) (n-j) Boole[CoprimeQ[i,j]], {i, 1, n-1}, {j, 1, n-1}] / 2 + n^2 - n; Array[a, 40] (* Vincenzo Librandi, Feb 05 2020 *)
  • Python
    from sympy import totient
    def A115005(n): return (n-1)*(2*n-1) + sum(totient(i)*(n-i)*(2*n-i) for i in range(2,n)) # Chai Wah Wu, Aug 15 2021

Formula

a(n) = (n-1)*(2n-1) + Sum_{i=2..n-1} (n-i)*(2n-i)*phi(i). - Chai Wah Wu, Aug 15 2021

Extensions

Offset corrected by Max Alekseyev, Apr 10 2019

A088658 Number of triangles in an n X n unit grid that have minimal possible area (of 1/2).

Original entry on oeis.org

0, 4, 32, 124, 320, 716, 1328, 2340, 3792, 5852, 8544, 12260, 16864, 22916, 30272, 39188, 49824, 62948, 78080, 96348, 117232, 141260, 168480, 200292, 235680, 276100, 321056, 371484, 427024, 489900, 558112, 634724, 718432, 810116, 909600, 1018388, 1135136, 1263828, 1402304, 1551908
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 21 2003

Keywords

Examples

			a(2)=4 because 4 (isosceles right) triangles with area 1/2 can be placed on a 2 X 2 grid.
		

Crossrefs

Cf. A045996.
The following eight sequences are all essentially the same. The simplest is A115004(n), which we denote by z(n). Then A088658(n) = 4*z(n-1); A114043(n) = 2*z(n-1)+2*n^2-2*n+1; A114146(n) = 2*A114043(n); A115005(n) = z(n-1)+n*(n-1); A141255(n) = 2*z(n-1)+2*n*(n-1); A290131(n) = z(n-1)+(n-1)^2; A306302(n) = z(n)+n^2+2*n. - N. J. A. Sloane, Feb 04 2020

Programs

  • Mathematica
    z[n_] := Sum[(n - i + 1)(n - j + 1) Boole[GCD[i, j] == 1], {i, n}, {j, n}];
    a[n_] := 4 z[n - 1];
    Array[a, 40] (* Jean-François Alcover, Mar 24 2020 *)
  • Python
    from sympy import totient
    def A088658(n): return 4*(n-1)**2 + 4*sum(totient(i)*(n-i)*(2*n-i) for i in range(2,n)) # Chai Wah Wu, Aug 15 2021

Formula

a(n+1) = 4*A115004(n).
a(n) = 4*(n-1)^2 + 4*Sum_{i=2..n-1} (n-i)*(2n-i)*phi(i). - Chai Wah Wu, Aug 15 2021

Extensions

a(7)-a(28) from Ray Chandler, May 03 2011
Corrected and extended by Ray Chandler, May 18 2011

A114146 Number of threshold functions on n X n grid.

Original entry on oeis.org

1, 2, 14, 58, 174, 402, 838, 1498, 2566, 4082, 6214, 8986, 12790, 17490, 23646, 31114, 40150, 50914, 64174, 79450, 97870, 118914, 143110, 170506, 202502, 238082, 278702, 323866, 374510, 430274, 493382, 561834, 638694, 722658, 814606, 914362, 1023430, 1140466
Offset: 0

Views

Author

N. J. A. Sloane, Feb 22 2006

Keywords

Comments

Also, number of intersections of a halfspace with an n X n grid. While A114043 counts cuts, this sequence counts sides of cuts. The only difference between this and twice A114043 is that this makes sense for the empty grid. This is the "labeled" version - rotations and reflections are not taken into account. - David Applegate, Feb 24 2006
In the terminology of Koplowitz et al., this is the number of linear dichotomies on a square grid. - N. J. A. Sloane, Mar 14 2020

Crossrefs

The following eight sequences are all essentially the same. The simplest is A115004(n), which we denote by z(n). Then A088658(n) = 4*z(n-1); A114043(n) = 2*z(n-1)+2*n^2-2*n+1; A114146(n) = 2*A114043(n); A115005(n) = z(n-1)+n*(n-1); A141255(n) = 2*z(n-1)+2*n*(n-1); A290131(n) = z(n-1)+(n-1)^2; A306302(n) = z(n)+n^2+2*n. - N. J. A. Sloane, Feb 04 2020

Programs

  • Mathematica
    a[0] = 1; a[n_] := 4 Sum[(n-i)(n-j) Boole[CoprimeQ[i, j]], {i, 1, n-1}, {j, 1, n-1}] + 4 n^2 - 4 n + 2;
    Array[a, 38, 0] (* Jean-François Alcover, Sep 04 2018, after Max Alekseyev in A114043 *)
  • Python
    from sympy import totient
    def A114146(n): return 1 if n == 0 else 8*n**2-12*n+6 + 4*sum(totient(i)*(n-i)*(2*n-i) for i in range(2,n)) # Chai Wah Wu, Aug 15 2021

Formula

For n>0, a(n) = 2*A114043(n).
For n>0, a(n) = 8*n^2 - 12*n + 6 + 4*Sum_{i=2..n-1} (n-i)*(2n-i)*phi(i). - Chai Wah Wu, Aug 15 2021

Extensions

Definition corrected by Max Alekseyev, Oct 23 2008
a(0)=1 prepended by Max Alekseyev, Jan 23 2015

A333282 Triangle read by rows: T(m,n) (m >= n >= 1) = number of regions formed by drawing the line segments connecting any two of the (m+1) X (n+1) lattice points in an m X n grid of squares and extending them to the boundary of the grid.

Original entry on oeis.org

4, 16, 56, 46, 192, 624, 104, 428, 1416, 3288, 214, 942, 3178, 7520, 16912, 380, 1672, 5612, 13188, 29588, 51864, 648, 2940, 9926, 23368, 52368, 92518, 164692, 1028, 4624, 15732, 37184, 83628, 148292, 263910, 422792, 1562, 7160, 24310, 57590, 130034, 230856, 410402, 658080, 1023416
Offset: 1

Views

Author

Keywords

Comments

Triangle gives number of nodes in graph LC(m,n) in the notation of Blomberg-Shannon-Sloane (2020).
If we only joined pairs of the 2(m+n) boundary points, we would get A331452. If we did not extend the lines to the boundary of the grid, we would get A288187. (One of the links below shows the difference between the three definitions in the case m=3, n=2.)

Examples

			Triangle begins:
4,
16, 56,
46, 192, 624,
104, 428, 1416, 3288,
214, 942, 3178, 7520, 16912,
380, 1672, 5612, 13188, 29588, 51864,
648, 2940, 9926, 23368, 52368, 92518, 164692,
1028, 4624, 15732, 37184, 83628, 148292, 263910, 422792
1562, 7160, 24310, 57590, 130034, 230856, 410402, 658080, 1023416
2256, 10336, 35132, 83116, 187376, 331484, 588618, 942808, 1466056, 2101272
		

Crossrefs

Cf. A288187, A331452, A333283 (edges), A333284 (vertices). Column 1 is A306302. Main diagonal is A333294.

Extensions

More terms and corrections from Scott R. Shannon, Mar 21 2020
More terms from Scott R. Shannon, May 27 2021

A115009 Array read by antidiagonals: let V(m,n) = Sum_{i=1..m, j=1..n, gcd(i,j)=1} (m+1-i)*(n+1-j), then T(m,n) = 2*m*n+m+n+2*V(m,n), for m >= 0, n >= 0.

Original entry on oeis.org

0, 1, 1, 2, 6, 2, 3, 13, 13, 3, 4, 22, 28, 22, 4, 5, 33, 49, 49, 33, 5, 6, 46, 74, 86, 74, 46, 6, 7, 61, 105, 131, 131, 105, 61, 7, 8, 78, 140, 188, 200, 188, 140, 78, 8, 9, 97, 181, 251, 289, 289, 251, 181, 97, 9, 10, 118, 226, 326, 386, 418, 386, 326, 226, 118, 10, 11, 141, 277
Offset: 0

Views

Author

N. J. A. Sloane, Feb 24 2006

Keywords

Comments

This is the number of linear partitions of an m X n grid.

Examples

			The array begins:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...
1, 6, 13, 22, 33, 46, 61, 78, 97, 118, ...
2, 13, 28, 49, 74, 105, 140, 181, 226, 277, ...
3, 22, 49, 86, 131, 188, 251, 326, 409, 502, ...
4, 33, 74, 131, 200, 289, 386, 503, 632, 777, ...
5, 46, 105, 188, 289, 418, 559, 730, 919, 1132, ...
6, 61, 140, 251, 386, 559, 748, 979, 1234, 1521, ...
7, 78, 181, 326, 503, 730, 979, 1282, 1617, 1994, ...
...
		

References

  • D. M. Acketa, J. D. Zunic: On the number of linear partitions of the (m,n)-grid. Inform. Process. Lett., 38 (3) (1991), 163-168. See Table A.1.
  • Jovisa Zunic, Note on the number of two-dimensional threshold functions, SIAM J. Discrete Math. Vol. 25 (2011), No. 3, pp. 1266-1268. See Equation (1.2).

Crossrefs

The second and third rows are A028872 and A358296.
The main diagonal is A141255 = A114043 - 1.
The lower triangle is A332351.

Programs

  • Maple
    V:=proc(m,n) local t1,i,j; t1:=0; for i from 1 to m do for j from 1 to n do if gcd(i,j)=1 then t1:=t1+(m+1-i)*(n+1-j); fi; od; od; t1; end; T:=(m,n)->(2*m*n+m+n+2*V(m,n));
  • Mathematica
    V[m_, n_] := Sum[If[GCD[i, j] == 1, (m-i+1)*(n-j+1), 0], {i, 1, m}, {j, 1, n}]; T[m_, n_] := 2*m*n+m+n+2*V[m, n]; Table[T[m-n, n], {m, 0, 11}, {n, 0, m}] // Flatten (* Jean-François Alcover, Jan 08 2014 *)

A177719 Number of line segments connecting exactly 3 points in an n X n grid of points.

Original entry on oeis.org

0, 0, 8, 24, 60, 112, 212, 344, 548, 800, 1196, 1672, 2284, 2992, 3988, 5128, 6556, 8160, 10180, 12424, 15068, 17968, 21604, 25576, 30092, 34976, 40900, 47288, 54500, 62224, 70972, 80296, 90740, 101824, 114700, 128344, 143212, 158896, 176836
Offset: 1

Views

Author

Seppo Mustonen, May 13 2010

Keywords

Comments

a(n) is also the number of pairs of points visible to each other exactly through one point in an n X n grid of points.
Mathematica code below computes with j=1 also A114043(n)-1 and A141255(n) much more efficiently than codes/formulas currently presented for those sequences.

Programs

  • Mathematica
    j=2;
    a[n_]:=a[n]=If[n<=j,0,2*a1[n]-a[n-1]+R1[n]]
    a1[n_]:=a1[n]=If[n<=j,0,2*a[n-1]-a1[n-1]+R2[n]]
    R1[n_]:=R1[n]=If[n<=j,0,R1[n-1]+4*S[n]]
    R2[n_]:=(n-1)*S[n]
    S[n_]:=If[Mod[n-1,j]==0,EulerPhi[(n-1)/j],0]
    Table[a[n],{n,1,50}]
  • PARI
    { A177719(n) = if(n<2, return(0)); 2*(n*(n-2) + sum(i=1,n-1,sum(j=1,n-1, (gcd(i,j)==2)*(n-i)*(n-j))) ); } \\ Max Alekseyev, Jul 08 2019
    
  • Python
    from sympy import totient
    def A177719(n): return 4*((n-1)*(n-2) + sum(totient(i)*(n-2*i)*(n-i) for i in range(2,n//2+1))) # Chai Wah Wu, Aug 18 2021

Formula

a(n) = Sum_{-n < i,j < n; gcd(i,j)=2} (n-|i|)*(n-|j|)/2. For n>1, a(n) = 2 * ( n*(n-2) + Sum_{i,j=1..n-1; gcd(i,j)=2} (n-i)*(n-j) ). - Max Alekseyev, Jul 08 2019
a(n) = 4*((n-1)*(n-2) + Sum_{i=2..floor(n/2)} (n-2*i)*(n-i)*phi(i)). - Chai Wah Wu, Aug 18 2021
Showing 1-10 of 22 results. Next