cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A046063 Numbers k such that the k-th partition number A000041(k) is prime.

Original entry on oeis.org

2, 3, 4, 5, 6, 13, 36, 77, 132, 157, 168, 186, 188, 212, 216, 302, 366, 417, 440, 491, 498, 525, 546, 658, 735, 753, 825, 841, 863, 1085, 1086, 1296, 1477, 1578, 1586, 1621, 1793, 2051, 2136, 2493, 2502, 2508, 2568, 2633, 2727, 2732, 2871, 2912, 3027, 3098, 3168, 3342, 3542, 3641, 4118
Offset: 1

Views

Author

Keywords

Comments

The corresponding primes are given in A049575. - Joerg Arndt, May 09 2013

Crossrefs

Programs

  • Mathematica
    Select[ Range@3341, PrimeQ@ PartitionsP@# &] (* Robert G. Wilson v *)
  • PARI
    for(n=0,10^5,my(p=numbpart(n));if(isprime(p),print1(n,", "))); \\ Joerg Arndt, May 09 2013
    
  • Python
    from sympy import isprime, npartitions
    print([n for n in range(1, 5001) if isprime(npartitions(n))]) # Indranil Ghosh, Apr 10 2017

Extensions

b-file extended by Max Alekseyev, Jul 07 2009, Jun 14 2011, Jan 08 2012, May 19 2014

A111036 Numbers n such that p(6n) is prime, where p(n) is the number of partitions of n.

Original entry on oeis.org

1, 6, 22, 28, 31, 36, 61, 83, 91, 181, 216, 263, 356, 417, 418, 428, 528, 557, 777, 1133, 1243, 1408, 2170, 2708, 3046, 3867, 5100, 5540, 5662, 7418, 9397, 12110, 12797, 14787, 16161, 16482, 18022, 19431, 19667, 21180, 22011, 22720, 23560, 27903
Offset: 1

Views

Author

Parthasarathy Nambi, Nov 11 2005

Keywords

Examples

			If n=91 then p(6n) = 27833079238879849385687 (prime).
		

Crossrefs

Programs

Extensions

a(10)-a(45) from Robert G. Wilson v, Nov 14 2005

A111045 Numbers n such that P(4n) is prime, where P(m) is the number of partitions of m.

Original entry on oeis.org

1, 9, 33, 42, 47, 53, 54, 110, 324, 534, 627, 642, 683, 728, 792, 1114, 2112, 2228, 2323, 2770, 3007, 3255, 3368, 3760, 4062, 4569, 6139, 7650, 7939, 8138, 8310, 8493, 8674, 9122, 9407, 10345, 11127, 13343, 14713, 15442, 15632, 16358, 16904, 18165, 19303
Offset: 1

Views

Author

Parthasarathy Nambi, Nov 11 2005

Keywords

Examples

			If n=110 then P(4*n) = 74878248419470886233 (prime).
		

Crossrefs

Programs

Extensions

a(9)-a(37) from Robert G. Wilson v, Nov 14 2005

A111389 Numbers n such that p(3n) is prime, where p(n) is the number of partitions of n.

Original entry on oeis.org

1, 2, 12, 44, 56, 62, 72, 122, 139, 166, 175, 182, 245, 251, 275, 362, 432, 526, 712, 831, 834, 836, 856, 909, 957, 1009, 1056, 1114, 1554, 2266, 2486, 2816, 3967, 4340, 5416, 6092, 6837, 6959, 7215, 7255, 7439, 7734, 9655, 10200, 11080, 11324, 11361, 12819
Offset: 1

Views

Author

Parthasarathy Nambi, Nov 09 2005

Keywords

Examples

			If n=72 then p(3n) = 15285151248481 (prime).
		

Crossrefs

Programs

Formula

Elements of A046063 which are == 0 (mod 3) divided by 3

Extensions

a(8)-a(48) from Robert G. Wilson v, Nov 11 2005

A114166 Numbers n such that p(5n) is prime, where p(n) is the number of partitions of n.

Original entry on oeis.org

1, 88, 105, 147, 165, 217, 1481, 2216, 2579, 2604, 3008, 3658, 3694, 4329, 4353, 4447, 4534, 5074, 5793, 6120, 6578, 6648, 7861, 7994, 8276, 8851, 9421, 10371, 12350, 12359, 12389, 13010, 13345, 13479, 14532, 14727, 16461, 19313, 19466, 20354
Offset: 1

Views

Author

Robert G. Wilson v, Nov 14 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Select[ Range[20780], PrimeQ[PartitionsP[5# ]] &]
  • PARI
    is(n)=isprime(numbpart(5*n)) \\ Charles R Greathouse IV, Feb 17 2017

A114167 Numbers n such that p(7n) is prime, where p(n) is the number of partitions of n.

Original entry on oeis.org

11, 24, 75, 78, 94, 105, 155, 211, 293, 416, 506, 666, 1860, 3013, 3508, 3811, 4869, 5615, 5710, 8824, 8841, 8998, 10380, 11014, 11779, 13795, 14276, 15285, 18014, 19456, 19855, 22435, 23343, 23391, 26328, 30608, 31380, 32074, 32810, 33459
Offset: 1

Views

Author

Robert G. Wilson v, Nov 14 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Select[ Range[28571], PrimeQ[PartitionsP[7# ]] &]
  • PARI
    is(n)=isprime(numbpart(7*n)) \\ Charles R Greathouse IV, Feb 17 2017

A114168 Numbers n such that p(8n) is prime, where p(n) is the number of partitions of n.

Original entry on oeis.org

21, 27, 55, 162, 267, 321, 364, 396, 557, 1056, 1114, 1385, 1684, 1880, 2031, 3825, 4069, 4155, 4337, 4561, 7721, 7816, 8179, 8452, 9962, 15885, 16871, 17024, 17040, 17670, 22186, 23037, 26782, 31307, 35364, 35442, 38430, 42307
Offset: 1

Views

Author

Robert G. Wilson v, Nov 14 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Select[ Range[25000], PrimeQ[PartitionsP[8# ]] &]
  • PARI
    is(n)=isprime(numbpart(8*n)) \\ Charles R Greathouse IV, Feb 17 2017

A114169 Numbers n such that p(9n) is prime, where p(n) is the number of partitions of n.

Original entry on oeis.org

4, 24, 144, 277, 278, 303, 319, 352, 518, 2279, 2405, 2578, 3400, 3787, 4273, 4457, 7603, 9145, 9858, 10774, 10988, 11545, 12954, 14120, 14674, 17537, 18193, 18602, 18919, 21955, 29775, 30559, 31504, 34160, 35618, 35655
Offset: 1

Views

Author

Robert G. Wilson v, Nov 14 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Select[ Range[22222], PrimeQ[PartitionsP[9# ]] &]
  • PARI
    is(n)=isprime(numbpart(9*n)) \\ Charles R Greathouse IV, Feb 17 2017

A114170 Numbers n such that p(10n) is prime, where p(n) is the number of partitions of n.

Original entry on oeis.org

44, 1108, 1302, 1504, 1829, 1847, 2267, 2537, 3060, 3289, 3324, 3997, 4138, 6175, 6505, 7266, 9733, 10177, 11483, 12708, 12881, 13632, 14136, 14414, 15917, 16409, 17614, 19133, 19381, 21966, 22967, 30565, 30744, 31655, 33783
Offset: 1

Views

Author

Robert G. Wilson v, Nov 14 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Select[ Range[20000], PrimeQ[PartitionsP[10# ]] &]
  • PARI
    is(n)=isprime(numbpart(10*n)) \\ Charles R Greathouse IV, Feb 17 2017

A115214 Numbers n such that p(12n) is prime, where p(n) is the number of partitions of n.

Original entry on oeis.org

3, 11, 14, 18, 108, 178, 209, 214, 264, 704, 1085, 1354, 1523, 2550, 2770, 2831, 3709, 6055, 8241, 9011, 10590, 11360, 11780, 15358, 18305, 23576, 23628, 24331, 25589, 25620, 32435, 40219, 41373, 48204, 50239, 53174, 55984, 57521, 78831, 84136
Offset: 1

Views

Author

Robert G. Wilson v, Nov 14 2005

Keywords

Comments

n belongs to this sequence if and only if 12n belongs to A046063.

Crossrefs

Programs

  • Mathematica
    Select[ Range@34000, PrimeQ@ PartitionsP[12# ] &]

Extensions

More terms from Max Alekseyev, Dec 18 2011
Showing 1-10 of 12 results. Next