A046063 Numbers k such that the k-th partition number A000041(k) is prime.
2, 3, 4, 5, 6, 13, 36, 77, 132, 157, 168, 186, 188, 212, 216, 302, 366, 417, 440, 491, 498, 525, 546, 658, 735, 753, 825, 841, 863, 1085, 1086, 1296, 1477, 1578, 1586, 1621, 1793, 2051, 2136, 2493, 2502, 2508, 2568, 2633, 2727, 2732, 2871, 2912, 3027, 3098, 3168, 3342, 3542, 3641, 4118
Offset: 1
Links
- Max Alekseyev, Table of n, a(n) for n = 1..4967 (contains all terms below 10^8)
- Chris K. Caldwell, Top twenty prime partition numbers, The Prime Pages.
- G. P. Michon, Table of partition function p(n) (n=0 through 4096)
- G. K. Patil, Ramanujan's Life And His Contributions In The Field Of Mathematics, International Journal of Scientific Research and Engineering Studies (IJSRES), Volume 1(6) (2014), ISSN: 2349-8862.
- Eric Weisstein's World of Mathematics, Partition Function P Congruences.
- Eric Weisstein's World of Mathematics, Partition Function P.
- Eric Weisstein's World of Mathematics, Integer Sequence Primes.
Crossrefs
Programs
-
Mathematica
Select[ Range@3341, PrimeQ@ PartitionsP@# &] (* Robert G. Wilson v *)
-
PARI
for(n=0,10^5,my(p=numbpart(n));if(isprime(p),print1(n,", "))); \\ Joerg Arndt, May 09 2013
-
Python
from sympy import isprime, npartitions print([n for n in range(1, 5001) if isprime(npartitions(n))]) # Indranil Ghosh, Apr 10 2017
Extensions
b-file extended by Max Alekseyev, Jul 07 2009, Jun 14 2011, Jan 08 2012, May 19 2014
Comments