cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A221715 Start of n-th doubling run in A114183.

Original entry on oeis.org

1, 5, 3, 9, 33, 11, 13, 7, 21, 25, 20, 17, 23, 19, 49, 39, 35, 47, 27, 29, 15, 43, 37, 97, 55, 41, 51, 57, 85, 73, 193, 111, 59, 61, 31, 89, 53, 329, 145, 192, 221, 237, 87, 105, 81, 101, 113, 481, 175, 149, 69, 93, 77, 99, 79, 71, 67, 65, 45, 75, 195, 157, 141, 189, 109, 83, 103, 229, 121, 352, 849, 233, 345, 297, 137, 187, 309, 281, 379, 155, 199, 159
Offset: 1

Views

Author

N. J. A. Sloane, Jan 27 2013

Keywords

Crossrefs

Programs

  • Maple
    # A114181
    M:=10000; M2:=1000;
    s1:={1}; v0:=[1]; v1:=[1]; v2:=[]; vi:=Array(1..M2);
    t1:=1; r1:=1; vi[1]:=1;
    for n from 2 to M do
    t2:=floor(sqrt(t1));
    if t2 in s1 then
       v0:=[op(v0),2*t1]; s1:={op(s1),2*t1}; r1:=r1+1; t1:=2*t1;
       if t1<=M2 then vi[t1]:=n; fi;
    else
       v0:=[op(v0),t2]; s1:={op(s1),t2}; v1:=[op(v1),t2]; v2:=[op(v2),r1]; r1:=1; t1:=t2;
       if t1<=M2 then vi[t1]:=n; fi;
    fi;
    od:
    # A114183:
    [seq(v0[i],i=1..nops(v0))];
    # A221715:
    [seq(v1[i],i=1..nops(v1))];
    # A221716:
    [seq(v2[i],i=1..nops(v2))];
    # A189419:
    [seq(vi[i],i=1..M2)];

A221716 Length of n-th doubling run in A114183.

Original entry on oeis.org

6, 2, 6, 8, 3, 5, 3, 7, 6, 5, 5, 6, 5, 8, 6, 6, 7, 5, 6, 4, 8, 6, 9, 6, 6, 7, 7, 8, 7, 10, 7, 6, 7, 5, 9, 6, 12, 7, 9, 9, 9, 6, 8, 7, 8, 8, 12, 7, 8, 6, 8, 7, 8, 7, 7, 7, 7, 6, 8, 10, 8, 8, 9, 7, 7, 8, 10, 7, 11, 12, 7, 10, 9, 7, 9, 10, 9, 10, 7, 9, 8, 9, 11, 11, 5, 8, 9, 8, 11, 10, 6, 8, 8, 6, 10, 7, 8, 9, 12, 8, 9, 12, 6, 8, 8, 11, 8, 9, 9, 8, 10, 9, 12
Offset: 1

Views

Author

N. J. A. Sloane, Jan 27 2013

Keywords

Crossrefs

Programs

A213220 Positions in A114183 where doubling runs begin.

Original entry on oeis.org

1, 7, 9, 15, 23, 26, 31, 34, 41, 47, 52, 57, 63, 68, 76, 82, 88, 95, 100, 106, 110, 118, 124, 133, 139, 145, 152, 159, 167, 174, 184, 191, 197, 204, 209, 218, 224, 236, 243, 252, 261, 270, 276, 284, 291, 299, 307, 319, 326, 334, 340, 348, 355, 363, 370, 377, 384, 391, 397, 405, 415, 423, 431, 440, 447, 454, 462, 472
Offset: 1

Views

Author

N. J. A. Sloane, Mar 02 2013

Keywords

Crossrefs

Cf. A114183, A221715, A221716 (first differences).

A189419 Inverse permutation to A114183.

Original entry on oeis.org

1, 2, 9, 3, 7, 10, 34, 4, 15, 8, 26, 11, 31, 35, 110, 5, 57, 16, 68, 52, 41, 27, 63, 12, 47, 32, 100, 36, 106, 111, 209, 6, 23, 58, 88, 17, 124, 69, 82, 53, 145, 42, 118, 28, 397, 64, 95, 13, 76, 48, 152, 33, 224
Offset: 1

Views

Author

Keywords

Programs

  • Haskell
    import Data.List (elemIndex)
    import Data.Maybe (fromJust)
    a189419 = (+ 1) . fromJust . (`elemIndex` a114183_list)
    -- Reinhard Zumkeller, Mar 05 2013

A222193 Records in A114183.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 48, 96, 144, 288, 576, 1152, 1216, 2432, 4736, 9472, 18688, 37376, 54272, 108544, 115712, 231424, 360448, 720896, 1384448, 2768896, 5537792, 6889472, 13778944, 27557888, 33177600, 66355200, 79495168, 158990336
Offset: 1

Views

Author

N. J. A. Sloane, Feb 13 2013

Keywords

Crossrefs

A222194 Where records occur in A114183.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 13, 14, 19, 20, 21, 22, 74, 75, 131, 132, 182, 183, 234, 235, 317, 318, 500, 501, 996, 997, 998, 1549, 1550, 1551, 2347, 2348, 4453, 4454, 4504, 4505, 4506, 4507, 6111, 15261, 15262, 15263, 15264, 56757, 76252, 80742, 80743, 80744
Offset: 1

Views

Author

N. J. A. Sloane, Feb 13 2013

Keywords

Crossrefs

A213656 Value of A114183 at end of n-th doubling run.

Original entry on oeis.org

32, 10, 96, 1152, 132, 176, 52, 448, 672, 400, 320, 544, 368, 2432, 1568, 1248, 2240, 752, 864, 232, 1920, 1376, 9472, 3104, 1760, 2624, 3264, 7296, 5440, 37376, 12352, 3552, 3776, 976, 7936, 2848, 108544, 21056, 37120, 49152, 56576, 7584, 11136, 6720, 10368, 12928, 231424, 30784, 22400, 4768, 8832, 5952, 9856
Offset: 1

Views

Author

N. J. A. Sloane, Mar 03 2013

Keywords

Crossrefs

A222802 When A114183 decreases in value for the n-th time, dropping to k (say), a(n) is the number of steps earlier that floor(k/2) appeared in A114183.

Original entry on oeis.org

5, 8, 12, 18, 19, 21, 25, 33, 36, 44, 53, 37, 53, 64, 14, 31, 32, 69, 71, 76, 77, 108, 120, 39, 93, 105, 123, 125, 157, 170, 52, 91, 93, 99, 190, 192, 89, 225, 238, 121, 72, 158, 251, 238, 251, 270, 205, 50, 209, 282, 284, 286, 287, 288, 289, 361, 385, 370, 281, 282, 340, 342, 344, 346, 309, 310, 312, 367, 460, 275
Offset: 1

Views

Author

N. J. A. Sloane, Mar 08 2013

Keywords

Comments

The fact that, when a number k occurs in A114183, floor(k/2) has already appeared, is a key step in the proof that A114183 is a permutation of the natural numbers. This fact is obvious if k is the result of a doubling step. The present sequence is an attempt to gain insight into why it is true when k occurs at a square root step.

Examples

			The first 50 terms of A114183 are:
1, 2, 4, 8, 16, 32, 5, 10, 3, 6, 12, 24, 48, 96, 9, 18, 36, 72, 144, 288, 576, 1152, 33, 66, 132, 11, 22, 44, 88, 176, 13, 26, 52, 7, 14, 28, 56, 112, 224, 448, 21, 42, 84, 168, 336, 672, 25, 50, 100, 200.
The sequence decreases from 32 to 5, from 10 to 3, from 96 to 9, and so on.
The values of k are therefore 5, 3, 9, 33, 11, 13, 7, 21, 25, ...
and the corresponding values of floor(k/2) are 2, 1, 4, 16, 5, 6, 3, 10, 12, ...
Since 2 appeared in A114183 5 steps before 5, a(1) = 5,
since 1 appeared 8 steps before 3, a(2) = 8,
since 4 appeared 12 steps before 9, a(3) = 12, and so on.
		

Crossrefs

A221718 Floor(sqrt(3*2^n)).

Original entry on oeis.org

1, 2, 3, 4, 6, 9, 13, 19, 27, 39, 55, 78, 110, 156, 221, 313, 443, 627, 886, 1254, 1773, 2508, 3547, 5016, 7094, 10033, 14188, 20066, 28377, 40132, 56755, 80264, 113511, 160529, 227023, 321059, 454046, 642119, 908093, 1284238, 1816186, 2568476, 3632373, 5136952, 7264747, 10273904, 14529495, 20547809, 29058990, 41095618, 58117981
Offset: 0

Views

Author

N. J. A. Sloane, Jan 30 2013

Keywords

Comments

Theorem 3 of Dubickas implies that infinitely many terms of this sequence are divisible by 2 or 3 (and hence infinitely many composites). - Charles R Greathouse IV, Feb 04 2016

References

  • Artūras Dubickas, Prime and composite integers close to powers of a number, Monatsh. Math. 158:3 (2009), pp. 271-284.

Crossrefs

Programs

  • Mathematica
    Floor[Sqrt[3*2^Range[0,50]]] (* Harvey P. Dale, Feb 03 2025 *)
  • PARI
    a(n)=sqrtint(3<Charles R Greathouse IV, Feb 04 2016

A221942 a(n) = floor(sqrt(5*2^n)).

Original entry on oeis.org

2, 3, 4, 6, 8, 12, 17, 25, 35, 50, 71, 101, 143, 202, 286, 404, 572, 809, 1144, 1619, 2289, 3238, 4579, 6476, 9158, 12952, 18317, 25905, 36635, 51810, 73271, 103621, 146542, 207243, 293085, 414486, 586171, 828972, 1172343, 1657944, 2344687, 3315888, 4689374, 6631776, 9378748, 13263553, 18757497, 26527107
Offset: 0

Views

Author

N. J. A. Sloane, Feb 01 2013

Keywords

Comments

Theorem 3 of Dubickas implies that infinitely many terms of this sequence are divisible by 2 or 3 (and hence infinitely many composites). - Charles R Greathouse IV, Feb 04 2016

References

  • Artūras Dubickas, Prime and composite integers close to powers of a number, Monatsh. Math. 158:3 (2009), pp. 271-284.

Crossrefs

Programs

Showing 1-10 of 20 results. Next