A114183
a(1) = 1; for n>1, a(n) = floor(sqrt(a(n-1))) if that number is not already in the sequence, otherwise a(n) = 2a(n-1).
Original entry on oeis.org
1, 2, 4, 8, 16, 32, 5, 10, 3, 6, 12, 24, 48, 96, 9, 18, 36, 72, 144, 288, 576, 1152, 33, 66, 132, 11, 22, 44, 88, 176, 13, 26, 52, 7, 14, 28, 56, 112, 224, 448, 21, 42, 84, 168, 336, 672, 25, 50, 100, 200, 400, 20, 40, 80, 160, 320, 17, 34, 68, 136, 272, 544, 23, 46, 92
Offset: 1
-
a114183 n = a114183_list !! (n-1)
a114183_list = 1 : f [1] where
f xs@(x:_) = y : f (y : xs) where
y = if z `notElem` xs then z else 2 * x where z = a000196 x
-- Reinhard Zumkeller, Mar 05 2013
-
See A221715.
-
a[1] = 1; a[n_] := a[n] = With[{an = Floor[Sqrt[a[n-1]]]}, If[FreeQ[Array[a, n-1], an], an, 2*a[n-1]]]; Table[a[n], {n, 1, 65}] (* Jean-François Alcover, Apr 23 2013 *)
Missing negative in definition inserted by
D. S. McNeil, May 26 2010
A221715
Start of n-th doubling run in A114183.
Original entry on oeis.org
1, 5, 3, 9, 33, 11, 13, 7, 21, 25, 20, 17, 23, 19, 49, 39, 35, 47, 27, 29, 15, 43, 37, 97, 55, 41, 51, 57, 85, 73, 193, 111, 59, 61, 31, 89, 53, 329, 145, 192, 221, 237, 87, 105, 81, 101, 113, 481, 175, 149, 69, 93, 77, 99, 79, 71, 67, 65, 45, 75, 195, 157, 141, 189, 109, 83, 103, 229, 121, 352, 849, 233, 345, 297, 137, 187, 309, 281, 379, 155, 199, 159
Offset: 1
-
# A114181
M:=10000; M2:=1000;
s1:={1}; v0:=[1]; v1:=[1]; v2:=[]; vi:=Array(1..M2);
t1:=1; r1:=1; vi[1]:=1;
for n from 2 to M do
t2:=floor(sqrt(t1));
if t2 in s1 then
v0:=[op(v0),2*t1]; s1:={op(s1),2*t1}; r1:=r1+1; t1:=2*t1;
if t1<=M2 then vi[t1]:=n; fi;
else
v0:=[op(v0),t2]; s1:={op(s1),t2}; v1:=[op(v1),t2]; v2:=[op(v2),r1]; r1:=1; t1:=t2;
if t1<=M2 then vi[t1]:=n; fi;
fi;
od:
# A114183:
[seq(v0[i],i=1..nops(v0))];
# A221715:
[seq(v1[i],i=1..nops(v1))];
# A221716:
[seq(v2[i],i=1..nops(v2))];
# A189419:
[seq(vi[i],i=1..M2)];
A213220
Positions in A114183 where doubling runs begin.
Original entry on oeis.org
1, 7, 9, 15, 23, 26, 31, 34, 41, 47, 52, 57, 63, 68, 76, 82, 88, 95, 100, 106, 110, 118, 124, 133, 139, 145, 152, 159, 167, 174, 184, 191, 197, 204, 209, 218, 224, 236, 243, 252, 261, 270, 276, 284, 291, 299, 307, 319, 326, 334, 340, 348, 355, 363, 370, 377, 384, 391, 397, 405, 415, 423, 431, 440, 447, 454, 462, 472
Offset: 1
A213656
Value of A114183 at end of n-th doubling run.
Original entry on oeis.org
32, 10, 96, 1152, 132, 176, 52, 448, 672, 400, 320, 544, 368, 2432, 1568, 1248, 2240, 752, 864, 232, 1920, 1376, 9472, 3104, 1760, 2624, 3264, 7296, 5440, 37376, 12352, 3552, 3776, 976, 7936, 2848, 108544, 21056, 37120, 49152, 56576, 7584, 11136, 6720, 10368, 12928, 231424, 30784, 22400, 4768, 8832, 5952, 9856
Offset: 1
A222802
When A114183 decreases in value for the n-th time, dropping to k (say), a(n) is the number of steps earlier that floor(k/2) appeared in A114183.
Original entry on oeis.org
5, 8, 12, 18, 19, 21, 25, 33, 36, 44, 53, 37, 53, 64, 14, 31, 32, 69, 71, 76, 77, 108, 120, 39, 93, 105, 123, 125, 157, 170, 52, 91, 93, 99, 190, 192, 89, 225, 238, 121, 72, 158, 251, 238, 251, 270, 205, 50, 209, 282, 284, 286, 287, 288, 289, 361, 385, 370, 281, 282, 340, 342, 344, 346, 309, 310, 312, 367, 460, 275
Offset: 1
The first 50 terms of A114183 are:
1, 2, 4, 8, 16, 32, 5, 10, 3, 6, 12, 24, 48, 96, 9, 18, 36, 72, 144, 288, 576, 1152, 33, 66, 132, 11, 22, 44, 88, 176, 13, 26, 52, 7, 14, 28, 56, 112, 224, 448, 21, 42, 84, 168, 336, 672, 25, 50, 100, 200.
The sequence decreases from 32 to 5, from 10 to 3, from 96 to 9, and so on.
The values of k are therefore 5, 3, 9, 33, 11, 13, 7, 21, 25, ...
and the corresponding values of floor(k/2) are 2, 1, 4, 16, 5, 6, 3, 10, 12, ...
Since 2 appeared in A114183 5 steps before 5, a(1) = 5,
since 1 appeared 8 steps before 3, a(2) = 8,
since 4 appeared 12 steps before 9, a(3) = 12, and so on.
Showing 1-5 of 5 results.
Comments