cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114220 a(n) = Sum_{k=0..floor(n/2)} (k - (k-1)*0^(n-2*k)).

Original entry on oeis.org

1, 0, 1, 1, 2, 3, 4, 6, 7, 10, 11, 15, 16, 21, 22, 28, 29, 36, 37, 45, 46, 55, 56, 66, 67, 78, 79, 91, 92, 105, 106, 120, 121, 136, 137, 153, 154, 171, 172, 190, 191, 210, 211, 231, 232, 253, 254, 276, 277, 300, 301, 325, 326, 351, 352, 378, 379, 406, 407, 435, 436
Offset: 0

Views

Author

Paul Barry, Nov 18 2005

Keywords

Comments

Diagonal sums of A114219.
It appears that the sequence terms from a(4) = 2 onwards are the exponents in the expansion of Sum_{n >= 0} q^(3*n-3) * Product_{k >= n} 1 - q^(2*k) = 1 - q^2 + q^3 - q^4 + q^6 - q^7 + q^10 - q^11 + - .... - Peter Bala, Jan 17 2025

Crossrefs

Column k=2 of A309049 (for n>0).

Programs

  • Magma
    [(2*n^2-2*n+7 + (9-2*n)*(-1)^n)/16: n in [0..80]]; // G. C. Greubel, Oct 21 2024
    
  • Mathematica
    CoefficientList[Series[(1-x-x^2+2x^3)/((1-x)(1-x^2)^2), {x,0,80}],x] (* Harvey P. Dale, Mar 24 2011 *)
  • SageMath
    def A114220(n): return (2*n^2-2*n+7 + (9-2*n)*(-1)^n)//16
    [A114220(n) for n in range(81)] # G. C. Greubel, Oct 21 2024

Formula

G.f.: (1-x-x^2+2x^3)/((1-x)*(1-x^2)^2).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
a(n) = (2*n^2-2*n+7 + (9-2*n)*(-1)^n)/16.
a(n) = A055802(n+1), n > 1. - R. J. Mathar, Aug 11 2008
E.g.f.: (1/16)*((9 + 2*x)*exp(-x) + (7 + 2*x^2)*exp(x)). - G. C. Greubel, Oct 21 2024