cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A114263 Smallest number m such that prime(n) + 2*prime(n+m) is a prime.

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 5, 3, 2, 2, 3, 1, 1, 4, 5, 1, 5, 4, 2, 2, 2, 2, 1, 3, 1, 1, 8, 4, 1, 1, 2, 3, 9, 2, 5, 2, 2, 9, 6, 1, 1, 1, 1, 2, 3, 4, 1, 4, 5, 8, 11, 1, 11, 4, 5, 1, 4, 1, 5, 8, 1, 1, 1, 1, 2, 5, 1, 5, 9, 2, 1, 10, 3, 4, 4, 5, 5, 6, 7, 4, 1, 1, 2, 4, 13, 6, 6, 6, 7, 9, 1, 3, 1, 7, 3, 9, 1, 3, 3, 6, 3, 8, 2
Offset: 2

Views

Author

Lei Zhou, Nov 20 2005

Keywords

Examples

			n=2: prime(2)+2*prime(2+1)=3+2*5=13 is prime, so a(2)=1;
n=3: prime(3)+2*prime(3+1)=5+2*7=19 is prime, so a(2)=1;
...
n=7: prime(7)+2*prime(7+1)=17+2*19=55 is not prime
...
prime(7)+2*prime(7+4)=17+2*31=79 is prime, so a(7)=4;
		

Crossrefs

Programs

  • Haskell
    a114263 n = head [m | m <- [1..n],
                          a010051 (a000040 n + 2 * a000040 (n + m)) == 1]
    -- Reinhard Zumkeller, Oct 31 2013
  • Mathematica
    Table[p1 = Prime[n1]; n2 = 1; p2 = Prime[n1 + n2]; While[cp = p1 + 2* p2; ! PrimeQ[cp], n2++; p2 = Prime[n1 + n2]]; n2, {n1, 2, 201}]

Extensions

Edited definition to conform to OEIS style. - Reinhard Zumkeller, Oct 31 2013

A114237 n(k) is the minimum n that requires at least k to make 2*Prime[n]+Prime[n-k] a prime.

Original entry on oeis.org

3, 12, 9, 10, 8, 17, 97, 20, 57, 50, 30, 56, 207, 171, 210, 134, 303, 127, 121, 275, 376, 278, 299, 413, 432, 251, 746, 949, 389, 742, 725, 1790, 1375, 3605, 783, 1812, 895, 1257, 2079, 2962, 4799, 3456, 6356, 1701, 5255, 4669, 5011, 7164, 3012, 8361, 11210
Offset: 1

Views

Author

Lei Zhou, Nov 20 2005

Keywords

Examples

			2*Prime[3]+Prime[3-1]=2*5+3=13 is prime, so n(1)=3;
2*Prime[4]+Prime[4-1]=2*7+5=19 is prime, not counted
...
2*Prime[8]+Prime[8-1]=2*19+17=55 is not prime
2*Prime[8]+Prime[8-2]=2*19+13=51 is not prime
2*Prime[8]+Prime[8-3]=2*19+11=49 is not prime
...
2*Prime[8]+Prime[8-5]=2*19+5=43 is prime, so n(5)=8;
		

Crossrefs

Programs

  • Mathematica
    Do[n[k] = 0, {k, 1, 2000}]; ct = 0; nm = 0; n2 = 0; n1 = 3; p1 = 5; While[ct < 200, n2 = 1; p2 = Prime[n1 - n2]; \ While[cp = 2*p1 + p2; ! PrimeQ[cp], n2++; p2 = Prime[n1 - n2]]; If[n[n2] == 0, n[ n2] = n1; If[n2 > nm, nm = n2]; If[n2 <= 200, ct++ ]; Print[Table[n[k], {k, 1, nm}]]]; n1++; p1 = Prime[n1]]

A114266 a(n) is the minimal number m that makes 2*prime(n)+prime(n+m) a prime.

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 1, 1, 3, 1, 2, 4, 6, 2, 6, 2, 1, 2, 5, 5, 2, 1, 2, 3, 5, 3, 1, 6, 1, 1, 8, 2, 4, 7, 1, 9, 3, 2, 9, 7, 5, 10, 4, 5, 1, 5, 5, 1, 1, 1, 8, 1, 1, 4, 6, 2, 1, 2, 12, 10, 1, 11, 8, 3, 11, 2, 2, 1, 4, 1, 7, 2, 3, 2, 11, 2, 3, 3, 3, 1, 1, 5, 2, 5, 1, 7, 3, 3, 4, 6, 4, 7, 4, 1, 9, 5, 3, 2, 4, 7, 2, 9, 2
Offset: 1

Views

Author

Lei Zhou, Nov 20 2005

Keywords

Examples

			n=1: 2*prime(1)+prime(1+1)=2*2+3=7 is prime, so a(1)=1;
n=2: 2*prime(2)+prime(2+1)=2*3+5=11 is prime, so a(2)=1;
...
n=4: 2*prime(4)+prime(4+1)=2*7+11=25 is not prime
...
2*prime(4)+prime(4+3)=2*7+17=31 is prime, so a(4)=3.
		

Crossrefs

Programs

  • Haskell
    a114266 n = head [m | m <- [1..],
                          a010051 (2 * a000040 n + a000040 (n + m)) == 1]
    -- Reinhard Zumkeller, Oct 29 2013
  • Mathematica
    Table[p1 = Prime[n1]; n2 = 1; p2 = Prime[n1 + n2]; While[cp = 2*p1 + p2; ! PrimeQ[cp], n2++; p2 = Prime[n1 + n2]]; n2, {n1, 1, 200}]
    mnm[n_]:=Module[{m=1,p=2Prime[n]},While[!PrimeQ[p+Prime[n+m]],m++];m]; Array[mnm,110] (* Harvey P. Dale, Aug 05 2017 *)

Extensions

Edited definition to conform to OEIS style. - N. J. A. Sloane, Jan 08 2011
Showing 1-3 of 3 results.