cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114242 a(n) = (n+1)(n+2)^2*(n+3)^2*(n+4)(2n+5)/720.

Original entry on oeis.org

1, 14, 90, 385, 1274, 3528, 8568, 18810, 38115, 72358, 130130, 223587, 369460, 590240, 915552, 1383732, 2043621, 2956590, 4198810, 5863781, 8065134, 10939720, 14651000, 19392750, 25393095, 32918886, 42280434, 53836615, 68000360
Offset: 0

Views

Author

Emeric Deutsch, Nov 18 2005

Keywords

Comments

Kekulé numbers for certain benzenoids.
Partial sums of A114244. First differences of A006857. - Peter Bala, Sep 21 2007

References

  • S. J. Cyvin and I. Gutman, KekulĂ© structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (pp. 167-169, Table 10.5/II/2 and p. 105, eq. (ii) K(Ob(2,4,n))).

Crossrefs

Programs

  • Maple
    a:=n->(n+1)*(n+2)^2*(n+3)^2*(n+4)*(2*n+5)/720: seq(a(n),n=0..30);
  • Mathematica
    Table[((n+1)(n+2)^2 (n+3)^2 (n+4)(2n+5))/720,{n,0,30}] (* or *) LinearRecurrence[ {8,-28,56,-70,56,-28,8,-1},{1,14,90,385,1274,3528,8568,18810},30] (* Harvey P. Dale, Aug 21 2013 *)
  • PARI
    a(n)=(n+1)*(n+2)^2*(n+3)^2*(n+4)*(2*n+5)/720 \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: (1+x)(1 + 5x + x^2)/(1-x)^8.
a(n-2) = (1/6) * Sum_{1 <= x_1, x_2 <= n} (x_1)^2*x_2*(det V(x_1,x_2))^2 = (1/6)*Sum_{1 <= i,j <= n} i^2*j*(i-j)^2, where V(x_1,x_2) is the Vandermonde matrix of order 2. - Peter Bala, Sep 21 2007
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8). - Harvey P. Dale, Aug 21 2013
From Amiram Eldar, May 29 2022: (Start)
Sum_{n>=0} 1/a(n) = 3550 - 5120*log(2).
Sum_{n>=0} (-1)^n/a(n) = 3430 - 1280*Pi + 60*Pi^2. (End)