A006542
a(n) = binomial(n,3)*binomial(n-1,3)/4.
Original entry on oeis.org
1, 10, 50, 175, 490, 1176, 2520, 4950, 9075, 15730, 26026, 41405, 63700, 95200, 138720, 197676, 276165, 379050, 512050, 681835, 896126, 1163800, 1495000, 1901250, 2395575, 2992626, 3708810, 4562425, 5573800, 6765440, 8162176, 9791320, 11682825, 13869450
Offset: 4
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 166, no. 1).
- S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 238.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 4..200
- Isaac Ahern and Sam Cook, Affine Symmetry Tensors in Minkowski Space, American Journal of Undergraduate Research, Volume 13, Issue 3, August 2016.
- P. Aluffi, Degrees of projections of rank loci, arXiv:1408.1702 [math.AG], 2014. ["After compiling the results of many explicit computations, we noticed that many of the numbers d_{n,r,S} appear in the existing literature in contexts far removed from the enumerative geometry of rank conditions; we owe this surprising (to us) observation to perusal of [Slo14]."]
- Brandy Amanda Barnette, Counting Convex Sets on Products of Totally Ordered Sets, Masters Theses & Specialist Projects, Paper 1484, 2015.
- V. E. Hoggatt, Jr., Letter to N. J. A. Sloane, Apr 1977
- G. Kreweras, Traitement simultané du "Problème de Young" et du "Problème de Simon Newcomb", Cahiers du Bureau Universitaire de Recherche Opérationnelle. Institut de Statistique, Université de Paris, 10 (1967), 23-31.
- G. Kreweras, Traitement simultané du "Problème de Young" et du "Problème de Simon Newcomb", Cahiers du Bureau Universitaire de Recherche Opérationnelle. Institut de Statistique, Université de Paris, 10 (1967), 23-31. [Annotated scanned copy]
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See pp. 6, 25.
- Robert Munafo, C(n,3)C(n-1,3)/4
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
The expression binomial(m+n-1,n)^2-binomial(m+n,n+1)*binomial(m+n-2,n-1) for the values m = 2 through 14 produces the sequences
A000012,
A000217,
A002415,
A006542,
A006857,
A108679,
A134288,
A134289,
A134290,
A134291,
A140925,
A140935,
A169937.
Cf.
A000332,
A000579,
A001263,
A002378,
A004068,
A005585,
A005891,
A006322,
A006414,
A047819,
A107891,
A114242.
Fourth column of the table of Narayana numbers
A001263.
Apart from a scale factor, a column of
A124428.
-
List([4..40], n-> n*(n-1)^2*(n-2)^2*(n-3)/144); # G. C. Greubel, Feb 24 2019
-
[ n*((n-1)*(n-2))^2*(n-3)/144 : n in [4..40] ]; // Wesley Ivan Hurt, Jun 17 2014
-
A006542:=-(1+3*z+z**2)/(z-1)**7; # conjectured by Simon Plouffe in his 1992 dissertation
A006542:=n->n*((n-1)*(n-2))^2*(n-3)/144; seq(A006542(n), n=4..40); # Wesley Ivan Hurt, Jun 17 2014
-
Table[Binomial[n, 3]*Binomial[n-1, 3]/4, {n, 4, 40}]
-
a(n)=n*((n-1)*(n-2))^2*(n-3)/144
-
[n*(n-1)^2*(n-2)^2*(n-3)/144 for n in (4..40)] # G. C. Greubel, Feb 24 2019
Zabroki and Lajos formulas offset corrected by
Gary Detlefs, Dec 05 2011
A006857
a(n) = binomial(n+5,5) * binomial(n+5,4)/(n+5).
Original entry on oeis.org
1, 15, 105, 490, 1764, 5292, 13860, 32670, 70785, 143143, 273273, 496860, 866320, 1456560, 2372112, 3755844, 5799465, 8756055, 12954865, 18818646, 26883780, 37823500, 52474500, 71867250, 97260345, 130179231, 172459665, 226296280, 294296640, 379541184
Offset: 0
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (pp. 167-169, Table 10.5/II/1).
- S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 239.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Brandy Amanda Barnette, Counting Convex Sets on Products of Totally Ordered Sets, Masters Theses & Specialist Projects, Paper 1484, 2015.
- G. Kreweras, Traitement simultané du "Problème de Young" et du "Problème de Simon Newcomb", Cahiers du Bureau Universitaire de Recherche Opérationnelle. Institut de Statistique, Université de Paris, 10 (1967), 23-31.
- G. Kreweras, Traitement simultané du "Problème de Young" et du "Problème de Simon Newcomb", Cahiers du Bureau Universitaire de Recherche Opérationnelle. Institut de Statistique, Université de Paris, 10 (1967), 23-31. [Annotated scanned copy]
- J. M. Landsberg and L. Manivel, The sextonions and E7 1/2, Adv. Math. 201 (2006), 143-179. [Th. 7.3, case a=4]
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 25.
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
The expression binomial(m+n-1,n)^2-binomial(m+n,n+1)*binomial(m+n-2,n-1) for the values m = 2 through 14 produces the sequences
A000012,
A000217,
A002415,
A006542,
A006857,
A108679,
A134288,
A134289,
A134290,
A134291,
A140925,
A140935,
A169937.
5th column of the table of Narayana numbers
A001263.
-
A006857:= func< n | Binomial(n+4,3)*Binomial(n+5,5)/4 >;
[A006857(n): n in [0..40]]; // G. C. Greubel, Mar 12 2025
-
a:=n->(n+1)*(n+2)^2*(n+3)^2*(n+4)^2*(n+5)/2880: seq(a(n),n=0..38); # Emeric Deutsch, Nov 18 2005
-
Table[Binomial[n+5,5] * Binomial[n+5,4]/(n+5), {n, 0, 50}] (* T. D. Noe, May 29 2012 *)
LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{1,15,105,490,1764,5292,13860,32670,70785},40] (* Harvey P. Dale, Oct 19 2024 *)
-
a(n) = binomial(n+5,5) * binomial(n+5,4)/(n+5) \\ Charles R Greathouse IV, Jun 11 2015
-
Vec((1+6*x+6*x^2+x^3)/(1-x)^9 + O(x^99)) \\ Altug Alkan, Sep 01 2016
-
def A006857(n): return binomial(n+4,3)*binomial(n+5,5)//4
print([A006857(n) for n in range(41)]) # G. C. Greubel, Mar 12 2025
Zabrocki formulas offset corrected by
Gary Detlefs, Dec 05 2011
A107891
a(n) = (n+1)*(n+2)^2*(n+3)^2*(n+4)*(3n^2 + 15n + 20)/2880.
Original entry on oeis.org
1, 19, 155, 805, 3136, 9996, 27468, 67320, 150645, 313027, 611611, 1134497, 2012920, 3436720, 5673648, 9093096, 14194881, 21643755, 32310355, 47319349, 68105576, 96479020, 134699500, 185562000, 252493605, 339663051, 452103939
Offset: 0
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see pp. 167, 187 and p. 105 eq. (iii) for k=2 and m=5).
- Shawn A. Broyles, Table of n, a(n) for n = 0..1000
- Paolo Aluffi, Degrees of projections of rank loci, arXiv:1408.1702 [math.AG], 2014. ["After compiling the results of many explicit computations, we noticed that many of the numbers d_{n,r,S} appear in the existing literature in contexts far removed from the enumerative geometry of rank conditions; we owe this surprising (to us) observation to perusal of [Slo14]."]
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
-
a:=n->(1/2880)*(n+1)*(n+2)^2*(n+3)^2*(n+4)*(3*n^2+15*n+20): seq(a(n),n=0..32);
-
Table[((1+n) (2+n)^2 (3+n)^2 (4+n) (20+3 n (5+n)))/2880,{n,0,40}] (* or *) LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{1,19,155,805,3136,9996,27468,67320,150645},40] (* Harvey P. Dale, Dec 10 2021 *)
A119308
Triangle for first differences of Catalan numbers.
Original entry on oeis.org
1, 2, 1, 3, 5, 1, 4, 14, 9, 1, 5, 30, 40, 14, 1, 6, 55, 125, 90, 20, 1, 7, 91, 315, 385, 175, 27, 1, 8, 140, 686, 1274, 980, 308, 35, 1, 9, 204, 1344, 3528, 4116, 2184, 504, 44, 1, 10, 285, 2430, 8568, 14112, 11340, 4410, 780, 54, 1, 11, 385, 4125
Offset: 0
Triangle begins:
1;
2, 1;
3, 5, 1;
4, 14, 9, 1;
5, 30, 40, 14, 1;
6, 55, 125, 90, 20, 1;
7, 91, 315, 385, 175, 27, 1;
8, 140, 686, 1274, 980, 308, 35, 1;
9, 204, 1344, 3528, 4116, 2184, 504, 44, 1;
-
a[k_,j_]:=If[k<=j,Binomial[j+1,2(j-k)]*CatalanNumber[j-k],0];
Flatten[Table[Sum[Binomial[n,j]*a[k,j],{j,0,n}],{n,0,10},{k,0,n}]] (* Indranil Ghosh, Mar 03 2017 *)
-
catalan(n)=binomial(2*n,n)/(n+1);
a(k,j)=if (k<=j,binomial(j+1,2*(j-k))*catalan(j-k),0);
tabl(nn)={for (n=0, nn, for (k=0, n, print1(sum(j=0, n, binomial(n,j)*a(k,j)),", "););print(););};
tabl(10); \\ Indranil Ghosh, Mar 03 2017
A004282
a(n) = n*(n+1)^2*(n+2)^2/12.
Original entry on oeis.org
0, 3, 24, 100, 300, 735, 1568, 3024, 5400, 9075, 14520, 22308, 33124, 47775, 67200, 92480, 124848, 165699, 216600, 279300, 355740, 448063, 558624, 690000, 845000, 1026675, 1238328, 1483524, 1766100, 2090175
Offset: 0
-
[n*(n+1)^2*(n+2)^2/12: n in [0..50]]; // Vincenzo Librandi, Feb 09 2012
-
a:= n-> binomial(2+n, 2)*binomial(2+n, 3): seq(a(n), n=0..31); # Zerinvary Lajos, Apr 26 2007
-
Table[n*(n+1)^2*(n+2)^2/12,{n,0,40}] (* Vincenzo Librandi, Feb 09 2012 *)
-
a(n) = binomial(n+2,2)*binomial(n+2,3); \\ Charles R Greathouse IV, Feb 09 2012
A114244
a(n) = (n+1)*(n+2)^2*(n+3)*(7n^2 + 28n + 30)/360.
Original entry on oeis.org
1, 13, 76, 295, 889, 2254, 5040, 10242, 19305, 34243, 57772, 93457, 145873, 220780, 325312, 468180, 659889, 912969, 1242220, 1664971, 2201353, 2874586, 3711280, 4741750, 6000345, 7525791, 9361548, 11556181, 14163745, 17244184, 20863744, 25095400, 30019297
Offset: 0
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (pp. 167-169, Table 10.5/II/5).
-
a:=n->(n+1)*(n+2)^2*(n+3)*(7*n^2+28*n+30)/360: seq(a(n),n=0..35);
-
Table[(n + 1)*(n + 2)^2*(n + 3)*(7*n^2 + 28*n + 30)/360, {n, 0, 30}] (* Amiram Eldar, May 31 2022 *)
CoefficientList[Series[(1+x)(1+5x+x^2)/(1-x)^7,{x,0,40}],x] (* or *) LinearRecurrence[ {7,-21,35,-35,21,-7,1},{1,13,76,295,889,2254,5040},40] (* Harvey P. Dale, Mar 06 2023 *)
Showing 1-6 of 6 results.
Comments