cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114254 Sum of all terms on the two principal diagonals of a 2n+1 X 2n+1 square spiral.

Original entry on oeis.org

1, 25, 101, 261, 537, 961, 1565, 2381, 3441, 4777, 6421, 8405, 10761, 13521, 16717, 20381, 24545, 29241, 34501, 40357, 46841, 53985, 61821, 70381, 79697, 89801, 100725, 112501, 125161, 138737, 153261, 168765, 185281, 202841, 221477, 241221
Offset: 0

Views

Author

William A. Tedeschi, Feb 06 2008, Mar 01 2008

Keywords

Examples

			For n = 1, the 3 X 3 spiral is
.
       7---8---9
       |
       6   1---2
       |       |
       5---4---3
.
so a(1) = 7 + 9 + 1 + 5 + 3 = 25.
.
For n = 2, the 5 X 5 spiral is
.
  21--22--23--24--25
   |
  20   7---8---9--10
   |   |           |
  19   6   1---2  11
   |   |       |   |
  18   5---4---3  12
   |               |
  17--16--15--14--13
.
so a(2) = 21 + 25 + 7 + 9 + 1 + 5 + 3 + 17 + 13 = 101.
		

Crossrefs

Cf. A016754, A054569, A053755, A054554 for diagonals from origin.
Cf. A325958 (first differences).

Programs

  • Mathematica
    Array[1 + 10 #^2 + (16 #^3 + 26 #)/3 &, 36, 0] (* Michael De Vlieger, Mar 01 2018 *)
  • PARI
    a(n) = 1 + 10*n^2 + (16*n^3 + 26*n)/3; \\ Joerg Arndt, Mar 01 2018

Formula

O.g.f.: 3/(-1+x) + 16/(-1+x)^2 + 44/(-1+x)^3 + 32/(-1+x)^4 = (1 + 21*x + 7*x^2 + 3*x^3)/(-1+x)^4. - R. J. Mathar, Feb 10 2008
a(n) = 1 + 10*n^2 + (16*n^3 + 26*n)/3. [Corrected by Arie Groeneveld, Aug 17 2008]