A114254 Sum of all terms on the two principal diagonals of a 2n+1 X 2n+1 square spiral.
1, 25, 101, 261, 537, 961, 1565, 2381, 3441, 4777, 6421, 8405, 10761, 13521, 16717, 20381, 24545, 29241, 34501, 40357, 46841, 53985, 61821, 70381, 79697, 89801, 100725, 112501, 125161, 138737, 153261, 168765, 185281, 202841, 221477, 241221
Offset: 0
Examples
For n = 1, the 3 X 3 spiral is . 7---8---9 | 6 1---2 | | 5---4---3 . so a(1) = 7 + 9 + 1 + 5 + 3 = 25. . For n = 2, the 5 X 5 spiral is . 21--22--23--24--25 | 20 7---8---9--10 | | | 19 6 1---2 11 | | | | 18 5---4---3 12 | | 17--16--15--14--13 . so a(2) = 21 + 25 + 7 + 9 + 1 + 5 + 3 + 17 + 13 = 101.
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..10000
- Project Euler, Problem 28. Number Spiral Diagonals
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Mathematica
Array[1 + 10 #^2 + (16 #^3 + 26 #)/3 &, 36, 0] (* Michael De Vlieger, Mar 01 2018 *)
-
PARI
a(n) = 1 + 10*n^2 + (16*n^3 + 26*n)/3; \\ Joerg Arndt, Mar 01 2018
Formula
O.g.f.: 3/(-1+x) + 16/(-1+x)^2 + 44/(-1+x)^3 + 32/(-1+x)^4 = (1 + 21*x + 7*x^2 + 3*x^3)/(-1+x)^4. - R. J. Mathar, Feb 10 2008
a(n) = 1 + 10*n^2 + (16*n^3 + 26*n)/3. [Corrected by Arie Groeneveld, Aug 17 2008]