cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A114266 a(n) is the minimal number m that makes 2*prime(n)+prime(n+m) a prime.

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 1, 1, 3, 1, 2, 4, 6, 2, 6, 2, 1, 2, 5, 5, 2, 1, 2, 3, 5, 3, 1, 6, 1, 1, 8, 2, 4, 7, 1, 9, 3, 2, 9, 7, 5, 10, 4, 5, 1, 5, 5, 1, 1, 1, 8, 1, 1, 4, 6, 2, 1, 2, 12, 10, 1, 11, 8, 3, 11, 2, 2, 1, 4, 1, 7, 2, 3, 2, 11, 2, 3, 3, 3, 1, 1, 5, 2, 5, 1, 7, 3, 3, 4, 6, 4, 7, 4, 1, 9, 5, 3, 2, 4, 7, 2, 9, 2
Offset: 1

Views

Author

Lei Zhou, Nov 20 2005

Keywords

Examples

			n=1: 2*prime(1)+prime(1+1)=2*2+3=7 is prime, so a(1)=1;
n=2: 2*prime(2)+prime(2+1)=2*3+5=11 is prime, so a(2)=1;
...
n=4: 2*prime(4)+prime(4+1)=2*7+11=25 is not prime
...
2*prime(4)+prime(4+3)=2*7+17=31 is prime, so a(4)=3.
		

Crossrefs

Programs

  • Haskell
    a114266 n = head [m | m <- [1..],
                          a010051 (2 * a000040 n + a000040 (n + m)) == 1]
    -- Reinhard Zumkeller, Oct 29 2013
  • Mathematica
    Table[p1 = Prime[n1]; n2 = 1; p2 = Prime[n1 + n2]; While[cp = 2*p1 + p2; ! PrimeQ[cp], n2++; p2 = Prime[n1 + n2]]; n2, {n1, 1, 200}]
    mnm[n_]:=Module[{m=1,p=2Prime[n]},While[!PrimeQ[p+Prime[n+m]],m++];m]; Array[mnm,110] (* Harvey P. Dale, Aug 05 2017 *)

Extensions

Edited definition to conform to OEIS style. - N. J. A. Sloane, Jan 08 2011

A114267 a(n) = smallest k such that A114266(k) = n.

Original entry on oeis.org

1, 11, 4, 12, 19, 13, 34, 31, 36, 42, 62, 59, 142, 158, 247, 173, 240, 273, 204, 417, 231, 669, 172, 348, 965, 1003, 115, 1369, 370, 1244, 1251, 1373, 983, 1109, 2489, 1028, 2583, 1506, 6506, 6773, 7762, 5525, 2463, 6534, 6451, 3587, 4944, 3119, 3178, 4880
Offset: 1

Views

Author

Lei Zhou, Nov 20 2005

Keywords

Comments

Inverse sequence to A114266.

Crossrefs

Programs

  • Mathematica
    Do[n[k] = 0, {k, 1, 2000}]; ct = 0; nm = 0; n2 = 0; n1 = 1; p1 = 2; While[ct < 200, n2 = 1; p2 = Prime[n1 + n2]; While[cp = 2*p1 + p2; ! PrimeQ[cp], n2++; p2 = Prime[n1 + n2]]; If[n[n2] == 0, n[ n2] = n1; If[n2 > nm, nm = n2]; If[n2 <= 200, ct++ ]; Print[Table[n[k], {k, 1, nm}]]]; n1++; p1 = Prime[n1]]

Extensions

I clarified the definition. - N. J. A. Sloane, Jan 08 2011
Showing 1-2 of 2 results.