A114327 Table T(n,m) = n - m read by upwards antidiagonals.
0, 1, -1, 2, 0, -2, 3, 1, -1, -3, 4, 2, 0, -2, -4, 5, 3, 1, -1, -3, -5, 6, 4, 2, 0, -2, -4, -6, 7, 5, 3, 1, -1, -3, -5, -7, 8, 6, 4, 2, 0, -2, -4, -6, -8, 9, 7, 5, 3, 1, -1, -3, -5, -7, -9, 10, 8, 6, 4, 2, 0, -2, -4, -6, -8, -10, 11, 9, 7, 5, 3, 1, -1, -3, -5, -7, -9, -11, 12, 10, 8, 6, 4, 2, 0, -2, -4, -6, -8, -10, -12
Offset: 0
Examples
From _Wolfdieter Lang_, Feb 05 2018: (Start) The table T(n, m) begins: n\m 0 1 2 3 4 5 ... 0: 0 -1 -2 -3 -4 -5 ... 1: 1 0 -1 -2 -3 -4 ... 2: 2 1 0 -1 -2 -3 ... 3: 3 2 1 0 -1 -2 ... 4: 4 3 2 1 0 -1 ... 5: 5 4 3 2 1 0 ... ... The triangle t(n, k) begins: n\k 0 1 2 3 4 5 6 7 8 9 10 ... 0: 0 1: 1 -1 2: 2 0 -2 3: 3 1 -1 -3 4: 4 2 0 -2 -4 5: 5 3 1 -1 -3 -5 6: 6 4 2 0 -2 -4 -6 7: 7 5 3 1 -1 -3 -5 -7 8: 8 6 4 2 0 -2 -4 -6 -8 9: 9 7 5 3 1 -1 -3 -5 -7 -9 10: 10 8 6 4 2 0 -2 -4 -6 -8 -10 ... Reformatted and corrected. (End)
Links
- Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
- W. Harter, Principles of Symmetry, Dynamics, Spectroscopy, Wiley, 1993, Ch. 5, page 345-346.
- B. Klee, Quantum Angular Momentum Matrices, Wolfram Demonstrations Project, 2016.
- J. Schwinger, On Angular Momentum, Cambridge: Harvard University, Nuclear Development Associates, Inc., 1952.
Crossrefs
Programs
-
Haskell
a114327 n k = a114327_tabl !! n !! k a114327_row n = a114327_tabl !! n a114327_tabl = zipWith (zipWith (-)) a025581_tabl a002262_tabl -- Reinhard Zumkeller, Aug 09 2014
-
Maple
seq(seq(i-2*j,j=0..i),i=0..30); # Robert Israel, Jan 29 2016
-
Mathematica
max = 12; a025581 = NestList[Prepend[#, First[#]+1]&, {0}, max]; a002262 = Table[Range[0, n], {n, 0, max}]; a114327 = a025581 - a002262 // Flatten (* Jean-François Alcover, Jan 04 2016 *) Flatten[Table[-2 m, {j, 0, 10, 1/2}, {m, -j, j}]] (* Bradley Klee, Jan 29 2016 *)
-
PARI
T(n,m) = n-m \\ Charles R Greathouse IV, Feb 07 2017
-
Python
from math import isqrt def A114327(n): return ((m:=isqrt(k:=n+1<<1))+(k>m*(m+1)))**2+1-k # Chai Wah Wu, Nov 09 2024
Formula
G.f. for the table: Sum_{n, m>=0} T(n,m)*x^n*y^n = (x-y)/((1-x)^2*(1-y)^2).
E.g.f. for the table: Sum_{n, m>=0} T(n,m)x^n/n!*y^m/m! = (x-y)*e^{x+y}.
a(n+1) = A004736(n) - A002260(n) or a(n+1) = ((t*t+3*t+4)/2-n) - (n-t*(t+1)/2), where t=floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Dec 24 2012
G.f. as sequence: -(1+x)/(1-x)^2 + Sum_{j>=0} (2*j+1)*x^(j*(j+1)/2) / (1-x). The sum is related to Jacobi theta functions. - Robert Israel, Jan 29 2016
Triangle t(n, k) = n - 2*k, for n >= 0, k = 0..n. (see the Maple program). - Wolfdieter Lang, Feb 05 2018
Extensions
Formula improved by Reinhard Zumkeller, Aug 09 2014
Comments