A114329 Triangle T(n,k) is the number of partitions of an n-set into lists (cf. A000262) with k lists of size 1.
1, 0, 1, 2, 0, 1, 6, 6, 0, 1, 36, 24, 12, 0, 1, 240, 180, 60, 20, 0, 1, 1920, 1440, 540, 120, 30, 0, 1, 17640, 13440, 5040, 1260, 210, 42, 0, 1, 183120, 141120, 53760, 13440, 2520, 336, 56, 0, 1, 2116800, 1648080, 635040, 161280, 30240, 4536, 504, 72, 0, 1
Offset: 0
Examples
Triangle begins: 1; 0, 1; 2, 0, 1; 6, 6, 0, 1; 36, 24, 12, 0, 1; 240, 180, 60, 20, 0, 1; ...
Links
- Nathaniel Johnston, Table of n, a(n) for n = 0..5150
Programs
-
Maple
t:=taylor(exp(x/(1-x)+(y-1)*x),x,11):for n from 0 to 10 do for k from 0 to n do printf("%d, ",coeff(n!*coeff(t,x,n),y,k)): od: printf("\n"): od: # Nathaniel Johnston, Apr 27 2011 # second Maple program: b:= proc(n) option remember; expand(`if`(n=0, 1, add(j!* `if`(j=1, x, 1)*b(n-j)*binomial(n-1, j-1), j=1..n))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n)): seq(T(n), n=0..10); # Alois P. Heinz, Feb 19 2022
-
Mathematica
nn = 10; Table[Take[(Range[0, nn]! CoefficientList[ Series[Exp[ x/(1 - x) - x + y x], {x, 0, nn}], {x, y}])[[i]], i], {i, 1, nn}] // Grid (* Geoffrey Critzer, Feb 19 2022 *)
Formula
E.g.f.: exp(x/(1-x)+(y-1)*x). More generally, e.g.f. for number of partitions of n-set into lists with k lists of size m is exp(x/(1-x)+(y-1)*x^m).
Comments