A114790
Cumulative product of quintuple factorial A085157.
Original entry on oeis.org
1, 1, 2, 6, 24, 120, 720, 10080, 241920, 8709120, 435456000, 28740096000, 4828336128000, 1506440871936000, 759246199455744000, 569434649591808000000, 601322989968949248000000
Offset: 0
a(10) = 1!!!!! * 2!!!!! * 3!!!!! * 4!!!!! * 5!!!!! * 6!!!!! * 7!!!!! * 8!!!!! * 9!!!!! * 10!!!!! = 1 * 2 * 3 * 4 * 5 * 6 * 14 * 24 * 36 * 50 = 435456000 = 2^11 * 3^5 * 5^3 * 7.
-
b:= function(n)
if n<1 then return 1;
else return n*b(n-5);
fi;
end;
List([0..20], n-> Product([0..n], j-> b(j)) ); # G. C. Greubel, Aug 21 2019
-
b:= func< n | n eq 0 select 1 else (n lt 6) select n else n*Self(n-5) >;
[(&*[b(j): j in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 21 2019
-
b:= n-> `if`(n < 1, 1, n*b(n-5)); a:= n-> product(b(j), j = 0..n); seq(a(n), n = 0..20); # G. C. Greubel, Aug 21 2019
-
b[n_]:= If[n<1, 1, n*b[n-5]]; a[n_]:= Product[b[j], {j,0,n}]; Table[a[n], {n,0,20}] (* G. C. Greubel, Aug 21 2019 *)
-
b(n)=if(n<1, 1, n*b(n-5));
vector(20, n, n--; prod(j=0,n, b(j)) ) \\ G. C. Greubel, Aug 21 2019
-
@CachedFunction
def b(n):
if (n<1): return 1
else: return n*b(n-5)
[product(b(j) for j in (0..n)) for n in (0..20)] # G. C. Greubel, Aug 21 2019
A114779
Cumulative product of quadruple factorial A007662.
Original entry on oeis.org
1, 1, 2, 6, 24, 120, 1440, 30240, 967680, 43545600, 5225472000, 1207084032000, 463520268288000, 271159356948480000, 455547719673446400000, 1578472848668491776000000, 9698137182219213471744000000
Offset: 0
a(10) = 1!!!! * 2!!!! * 3!!!! * 4!!!! * 5!!!! * 6!!!! * 7!!!! * 8!!!! * 9!!!! * 10!!!! = 1 * 2 * 3 * 4 * 5 * 12 * 21 * 32 * 45 * 120 = 5225472000 = 2^13 * 3^6 * 5^3 * 7.
A114796
Cumulative product of sextuple factorial A085158.
Original entry on oeis.org
1, 1, 2, 6, 24, 120, 720, 5040, 80640, 2177280, 87091200, 4790016000, 344881152000, 31384184832000, 7030057402368000, 2847173247959040000, 1822190878693785600000, 1703748471578689536000000
Offset: 0
a(10) = 1!6 * 2!6 * 3!6 * 4!6 * 5!6 * 6!6 * 7!6 * 8!6 * 9!6 * 10!6
= 1 * 2 * 3 * 4 * 5 * 6 * 7 * 16 * 27 * 40 = 87091200 = 2^11 * 3^5 * 5^2 * 7.
Note that a(10) + 1 = 87091201 is prime, as is a(9) + 1 = 2177281.
-
b:= function(n)
if n<1 then return 1;
else return n*b(n-6);
fi;
end;
List([0..20], n-> Product([0..n], j-> b(j)) ); # G. C. Greubel, Aug 22 2019
-
b:=func< n | n le 6 select n else n*Self(n-6) >;
[1] cat [(&*[b(j): j in [1..n]]): n in [1..20]]; // G. C. Greubel, Aug 22 2019
-
b:= n-> `if`(n<1, 1, n*b(n-5)); a:= n-> product(b(j), j = 0..n); seq(a(n), n = 0..20); # G. C. Greubel, Aug 22 2019
-
b[n_]:= b[n]= If[n<1, 1, n*b[n-6]]; a[n_]:= Product[b[j], {j,0,n}];
Table[a[n], {n, 0, 20}] (* G. C. Greubel, Aug 22 2019 *)
-
b(n)=if(n<1, 1, n*b(n-6));
vector(20, n, n--; prod(j=0,n, b(j)) ) \\ G. C. Greubel, Aug 22 2019
-
def b(n):
if (n<1): return 1
else: return n*b(n-6)
[product(b(j) for j in (0..n)) for n in (0..20)] # G. C. Greubel, Aug 22 2019
A114805
Cumulative sum of quintuple factorial numbers n!!!!! (A085157).
Original entry on oeis.org
1, 2, 4, 7, 11, 16, 22, 36, 60, 96, 146, 212, 380, 692, 1196, 1946, 3002, 5858, 11474, 21050, 36050, 58226, 121058, 250226, 480050, 855050, 1431626, 3128090, 6744794, 13409690, 24659690, 42533546, 96820394, 216171626, 442778090, 836528090
Offset: 0
a(10) = 0!5 + 1!5 + 2!5 + 3!5 + 4!5 + 5!5 + 6!5 + 7!5 + 8!5 + 9!5 + 10!5 =
1 + 1 + 2 + 3 + 4 + 5 + 6 + 14 + 24 + 36 + 50 = 146 = 2 * 73.
-
b:= function(n)
if n<1 then return 1;
else return n*b(n-5);
fi;
end;
List([0..40], n-> Sum([0..n], j-> b(j)) ); # G. C. Greubel, Aug 21 2019
-
b:= func< n | n eq 0 select 1 else (n lt 6) select n else n*Self(n-5) >;
[(&+[b(j): j in [0..n]]): n in [0..40]]; // G. C. Greubel, Aug 21 2019
-
b:= n-> `if`(n < 1, 1, n*b(n-5)); a:= n-> sum(b(j), j = 0..n); seq(a(n), n = 0..40); # G. C. Greubel, Aug 21 2019
-
f5[0]=1; f5[n_]:= f5[n]= If[n<=6, n, n f5[n-5]]; Accumulate[f5/@Range[0, 35]] (* Giovanni Resta, Jun 15 2016 *)
-
b(n)=if(n<1, 1, n*b(n-5));
vector(40, n, n--; sum(j=0,n, b(j)) ) \\ G. C. Greubel, Aug 21 2019
-
@CachedFunction
def b(n):
if (n<1): return 1
else: return n*b(n-5)
[sum(b(j) for j in (0..n)) for n in (0..40)] # G. C. Greubel, Aug 21 2019
A108895
Partial sums of quadruple factorial numbers n!!!! (A007662).
Original entry on oeis.org
1, 2, 4, 7, 11, 16, 28, 49, 81, 126, 246, 477, 861, 1446, 3126, 6591, 12735, 22680, 52920, 118755, 241635, 450480, 1115760, 2629965, 5579085, 10800210, 28097490, 68981025, 151556385, 302969010, 821887410, 2089276995, 4731688515
Offset: 0
a(31) = 1 + 1 + 2 + 3 + 4 + 5 + 12 + 21 + 32 + 45 + 120 + 231 + 384 + 585 + 1680 + 3465 + 6144 + 9945 + 30240 + 65835 + 122880 + 208845 + 665280 + 1514205 + 2949120 + 5221125 + 17297280 + 40883535 + 82575360 + 151412625 + 518918400 + 1267389585 = 2089276995 = 3 * 5 * 13 * 337 * 31793.
- J. Spanier and K. B. Oldham, An Atlas of Functions, Hemisphere, NY, 1987, p. 23.
-
NFactorialM[n_Integer, m_Integer] := Block[{k = n, p = Max[1, n]}, While[k > m, k -= m; p *= k]; p]; Table[ Sum[ NFactorialM[i, 4], {i, 0, n}], {n, 0, 33}] (* Robert G. Wilson v, Feb 21 2006 *)
A114778
Cumulative product of triple factorial A007661.
Original entry on oeis.org
1, 1, 2, 6, 24, 240, 4320, 120960, 9676800, 1567641600, 438939648000, 386266890240000, 750902834626560000, 2733286318040678400000, 33674087438261157888000000, 981936389699695364014080000000
Offset: 0
a(10) = 1!!! * 2!!! * 3!!! * 4!!! * 5!!! * 6!!! * 7!!! * 8!!! * 9!!! * 10!!!
= 1 * 2 * 3 * 4 * 10 * 18 * 28 * 80 * 162 * 280 = 438939648000 = 2^15 * 3^7 * 5^3 * 7^2.
Showing 1-6 of 6 results.
Comments