A114374 Number of partitions of n into parts that are not squarefree.
1, 0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 3, 1, 0, 0, 5, 2, 2, 0, 7, 3, 2, 0, 11, 6, 4, 3, 15, 8, 6, 3, 22, 13, 11, 6, 34, 18, 15, 9, 46, 27, 24, 17, 64, 43, 33, 23, 89, 60, 51, 37, 124, 84, 78, 51, 166, 119, 109, 78, 226, 168, 152, 118, 300, 228, 215, 166, 404, 313, 300, 230, 546, 421, 409
Offset: 0
Keywords
Examples
a(12) = #{2*2*3, 2*2*2 + 2*2, 2*2 + 2*2 + 2*2} = 3; a(13) = #{3*3 + 2*2} = 1.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Programs
-
Haskell
a114374 = p a013929_list where p _ 0 = 1 p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m -- Reinhard Zumkeller, Jun 01 2015
-
Maple
with(numtheory): b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+ `if`(i>n or issqrfree(i), 0, b(n-i, i)))) end: a:= n-> b(n$2): seq(a(n), n=0..100); # Alois P. Heinz, Jun 03 2015
-
Mathematica
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n || SquareFreeQ[i], 0, b[n-i, i]]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jun 30 2015, after Alois P. Heinz *)
Formula
G.f.: Product_{k>=1} (1 - mu(k)^2*x^k)/(1 - x^k), where mu(k) is the Moebius function (A008683). - Ilya Gutkovskiy, Dec 30 2016
Extensions
Offset changed and a(0)=1 prepended by Reinhard Zumkeller, Jun 01 2015
Comments