A236918
Triangle read by rows: Catalan triangle of the k-Fibonacci sequence.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 1, 3, 7, 8, 1, 4, 12, 22, 24, 1, 5, 18, 43, 73, 75, 1, 6, 25, 72, 156, 246, 243, 1, 7, 33, 110, 283, 564, 844, 808, 1, 8, 42, 158, 465, 1092, 2046, 2936, 2742, 1, 9, 52, 217, 714, 1906, 4178, 7449, 10334, 9458, 1, 10, 63, 288, 1043, 3096, 7670, 15904, 27231, 36736, 33062
Offset: 1
Triangle begins:
1;
1, 1;
1, 2, 3;
1, 3, 7, 8;
1, 4, 12, 22, 24;
1, 5, 18, 43, 73, 75;
1, 6, 25, 72, 156, 246, 243;
1, 7, 33, 110, 283, 564, 844, 808;
1, 8, 42, 158, 465, 1092, 2046, 2936, 2742;
1, 9, 52, 217, 714, 1906, 4178, 7449, 10334, 9458;
1, 10, 63, 288, 1043, 3096, 7670, 15904, 27231, 36736, 33062;
... - Extended by _Philippe Deléham_, Feb 10 2014
-
P[n_, x_]:= P[n,x]= If[n==0, 1, Sum[(j/(2*n-j))*Binomial[2*n-j, n-j]*Fibonacci[j, 1/x] *x^(n-1), {j,0,n}]];
T[n_, k_]:= Coefficient[P[n, x], x, k];
Table[T[n, k], {n,10}, {k, 0, n-1}]//Flatten (* G. C. Greubel, Jun 14 2022 *)
-
def f(n,x): return sum( binomial(n-j-1, j)*x^(n-2*j-1) for j in (0..(n-1)//2) )
def p(n,x):
if (n==0): return 1
else: return sum( (j/(2*n-j))*binomial(2*n-j, n-j)*x^(n-1)*f(j, 1/x) for j in (0..n) )
def A236918(n,k): return ( p(n,x) ).series(x, n+1).list()[k]
flatten([[A236918(n,k) for k in (0..n-1)] for n in (1..12)]) # G. C. Greubel, Jun 14 2022
A114494
Triangle read by rows: T(n,k) is number of hill-free Dyck paths of semilength n and having k returns to the x-axis. (A Dyck path is said to be hill-free if it has no peaks at level 1.)
Original entry on oeis.org
0, 1, 2, 5, 1, 14, 4, 42, 14, 1, 132, 48, 6, 429, 165, 27, 1, 1430, 572, 110, 8, 4862, 2002, 429, 44, 1, 16796, 7072, 1638, 208, 10, 58786, 25194, 6188, 910, 65, 1, 208012, 90440, 23256, 3808, 350, 12, 742900, 326876, 87210, 15504, 1700, 90, 1, 2674440, 1188640
Offset: 1
T(5,2)=4 because we have UUD(D)UUDUD(D), UUD(D)UUUDD(D), UUDUD(D)UUD(D) and UUUDD(D)UUD(D), where U=(1,1), D=(1,-1) (returns to the axis are shown between parentheses).
Triangle starts:
0;
1;
2;
5, 1;
14, 4;
42, 14, 1;
132, 48, 6;
429, 165, 27, 1;
- C. Defant, Preimages under the stack-sorting algorithm, arXiv:1511.05681 [math.CO], 2015-2018.
- C. Defant, Preimages under the stack-sorting algorithm, Graphs Combin., 33 (2017), 103-122.
- C. Defant, Stack-sorting preimages of permutation classes, arXiv:1809.03123 [math.CO], 2018.
- E. Deutsch and L. Shapiro, A survey of the Fine numbers, Discrete Math., 241 (2001), 241-265.
-
/* except 0 as triangle */ [[(k/(n-k))*Binomial(2*n-2*k, n-2*k): k in [1..n div 2]]: n in [2.. 15]]; // Vincenzo Librandi, Sep 15 2018
-
T:=proc(n,k) if k<=floor(n/2) then k*binomial(2*n-2*k,n-2*k)/(n-k) else 0 fi end: 0; for n from 2 to 15 do seq(T(n,k),k=1..floor(n/2)) od; # yields sequence in triangular form
-
Join[{0}, t[n_, k_]:=(k/(n - k)) Binomial [2 n - 2 k, n - 2 k]; Table[t[n, k], {n, 1, 20}, {k, n/2}]//Flatten] (* Vincenzo Librandi, Sep 15 2018 *)
A114626
Triangle read by rows: T(n,k) is the number of hill-free Dyck paths of semilength n and having k peaks at level 2; 0<= k<=n-1, n>=2 (a Dyck path is said to be hill-free if it has no peaks at level 1).
Original entry on oeis.org
0, 1, 1, 0, 1, 2, 2, 1, 1, 6, 6, 3, 2, 1, 19, 17, 12, 5, 3, 1, 61, 56, 36, 20, 8, 4, 1, 202, 185, 120, 66, 31, 12, 5, 1, 683, 624, 409, 224, 110, 46, 17, 6, 1, 2348, 2144, 1408, 784, 385, 172, 66, 23, 7, 1, 8184, 7468, 4920, 2760, 1380, 624, 257, 92, 30, 8, 1, 28855, 26317
Offset: 2
T(5,2)=3 because we have U(UD)(UD)UUDDD, UUUDD(UD)(UD)D and U(UD)UUDD(UD)D, where U=(1,1), D=(1,-1) (the peaks at level 2 are shown between parentheses).
Triangle begins:
0,1;
1,0,1;
2,2,1,1;
6,6,3,2,1;
19,17,12,5,3,1;
-
C:=(1-sqrt(1-4*z))/2/z: G:=(1+z-t*z-z*C)/(1+z+z^2-t*z-t*z^2-z*(1+z)*C): Gser:=simplify(series(G,z=0,15)): for n from 2 to 12 do P[n]:=coeff(Gser,z^n) od: for n from 2 to 12 do seq(coeff(t*P[n],t^j),j=1..n) od; # yields sequence in triangular form
A237596
Convolution triangle of A000958(n+1).
Original entry on oeis.org
1, 1, 1, 3, 2, 1, 8, 7, 3, 1, 24, 22, 12, 4, 1, 75, 73, 43, 18, 5, 1, 243, 246, 156, 72, 25, 6, 1, 808, 844, 564, 283, 110, 33, 7, 1, 2742, 2936, 2046, 1092, 465, 158, 42, 8, 1, 9458, 10334, 7449, 4178, 1906, 714, 217, 52, 9, 1, 33062, 36736, 27231, 15904, 7670, 3096, 1043, 288, 63, 10, 1
Offset: 0
Triangle begins:
1;
1, 1;
3, 2, 1;
8, 7, 3, 1;
24, 22, 12, 4, 1;
75, 73, 43, 18, 5, 1;
243, 246, 156, 72, 25, 6, 1;
808, 844, 564, 283, 110, 33, 7, 1;
...
-
# Uses function PMatrix from A357368. Adds column 1,0,0,0,... to the left.
PMatrix(10, n -> A000958(n)); # Peter Luschny, Oct 19 2022
-
P[n_, x_]:= P[n, x]= If[n==0, 1, Sum[(j/(2*n-j))*Binomial[2*n-j, n-j]*Fibonacci[j, x], {j,0,n}]];
T[n_, k_] := Coefficient[P[n+1, x], x, k];
Table[T[n, k], {n,0,13}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 14 2022 *)
-
def f(n,x): return sum( binomial(n-j-1, j)*x^(n-2*j-1) for j in (0..(n-1)//2) )
def p(n,x):
if (n==0): return 1
else: return sum( (j/(2*n-j))*binomial(2*n-j, n-j)*f(j, x) for j in (0..n) )
def A237596(n,k): return ( p(n+1,x) ).series(x, n+1).list()[k]
flatten([[A237596(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 14 2022
Showing 1-4 of 4 results.
Comments