A114617 Numbers k such that k and k+1 are both refactorable numbers.
1, 8, 1520, 50624, 62000, 103040, 199808, 221840, 269360, 463760, 690560, 848240, 986048, 1252160, 1418480, 2169728, 2692880, 2792240, 3448448, 3721040, 3932288, 5574320, 5716880, 6066368, 6890624, 6922160, 8485568
Offset: 1
Keywords
Links
- Jud McCranie, Table of n, a(n) for n = 1..94342 First 1000 terms by Donovan Johnson.
- Joshua Zelinsky, Tau Numbers: A Partial Proof of a Conjecture and Other Results, Journal of Integer Sequences, Vol. 5 (2002), Article 02.2.8.
- Eric Weisstein's World of Mathematics, Refactorable Number.
Programs
-
GAP
Filtered([1..10^6],n->n mod Tau(n)=0 and (n+1) mod Tau(n+1)=0 ); # Muniru A Asiru, Dec 21 2018
-
Maple
with(numtheory); RFC:=[]: for w to 1 do for k from 1 to 12^6 do n:=144*k+(6*12+8); if andmap(z-> z mod tau(z) = 0,[n,n+1]) then RFC:=[op(RFC),n]; print(n); fi od od; # it is possible to remove the condition n = (6*12+8) mod 12^2 but you'll get the same sequence. - Walter Kehowski, Jun 19 2006
-
Mathematica
Select[Join[{1, 8}, 144*Range[10^5] + 80], Mod[#, DivisorSigma[0, #]] == 0 && Mod[#+1, DivisorSigma[0, #+1]] == 0 & ](* Jean-François Alcover, Oct 25 2012, after Walter Kehowski *)
-
PARI
isok(n) = !(n % numdiv(n)) && !((n+1) % numdiv(n+1)); \\ Michel Marcus, Dec 21 2018
Formula
a(n) mod tau(a(n)) = 0 and (a(n)+1) mod tau(a(n)+1) = 0 where tau(n) is the number of divisors of n. - Walter Kehowski, Jun 19 2006
Comments